Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 338, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771321

RESUMO

Fucosyl-oligosaccharides (FUS) provide many health benefits to breastfed infants, but they are almost completely absent from bovine milk, which is the basis of infant formula. Therefore, there is a growing interest in the development of enzymatic transfucosylation strategies for the production of FUS. In this work, the α-L-fucosidases Fuc2358 and Fuc5372, previously isolated from the intestinal bacterial metagenome of breastfed infants, were used to synthesize fucosyllactose (FL) by transfucosylation reactions using p-nitrophenyl-α-L-fucopyranoside (pNP-Fuc) as donor and lactose as acceptor. Fuc2358 efficiently synthesized the major fucosylated human milk oligosaccharide (HMO) 2'-fucosyllactose (2'FL) with a 35% yield. Fuc2358 also produced the non-HMO FL isomer 3'-fucosyllactose (3'FL) and traces of non-reducing 1-fucosyllactose (1FL). Fuc5372 showed a lower transfucosylation activity compared to Fuc2358, producing several FL isomers, including 2'FL, 3'FL, and 1FL, with a higher proportion of 3'FL. Site-directed mutagenesis using rational design was performed to increase FUS yields in both α-L-fucosidases, based on structural models and sequence identity analysis. Mutants Fuc2358-F184H, Fuc2358-K286R, and Fuc5372-R230K showed a significantly higher ratio between 2'FL yields and hydrolyzed pNP-Fuc than their respective wild-type enzymes after 4 h of transfucosylation. The results with the Fuc2358-F184W and Fuc5372-W151F mutants showed that the residues F184 of Fuc2358 and W151 of Fuc5372 could have an effect on transfucosylation regioselectivity. Interestingly, phenylalanine increases the selectivity for α-1,2 linkages and tryptophan for α-1,3 linkages. These results give insight into the functionality of the active site amino acids in the transfucosylation activity of the GH29 α-L-fucosidases Fuc2358 and Fuc5372. KEY POINTS: Two α-L-fucosidases from infant gut bacterial microbiomes can fucosylate glycans Transfucosylation efficacy improved by tailored point-mutations in the active site F184 of Fuc2358 and W151 of Fuc5372 seem to steer transglycosylation regioselectivity.


Assuntos
Microbioma Gastrointestinal , Metagenoma , Leite Humano , Trissacarídeos , alfa-L-Fucosidase , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo , Humanos , Trissacarídeos/metabolismo , Leite Humano/química , Lactose/metabolismo , Oligossacarídeos/metabolismo , Mutagênese Sítio-Dirigida , Lactente , Fucose/metabolismo
2.
Int J Mol Sci ; 24(12)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37373145

RESUMO

Sialic acids (SAs) are α-keto-acid sugars with a nine-carbon backbone present at the non-reducing end of human milk oligosaccharides and the glycan moiety of glycoconjugates. SAs displayed on cell surfaces participate in the regulation of many physiologically important cellular and molecular processes, including signaling and adhesion. Additionally, sialyl-oligosaccharides from human milk act as prebiotics in the colon by promoting the settling and proliferation of specific bacteria with SA metabolism capabilities. Sialidases are glycosyl hydrolases that release α-2,3-, α-2,6- and α-2,8-glycosidic linkages of terminal SA residues from oligosaccharides, glycoproteins and glycolipids. The research on sialidases has been traditionally focused on pathogenic microorganisms, where these enzymes are considered virulence factors. There is now a growing interest in sialidases from commensal and probiotic bacteria and their potential transglycosylation activity for the production of functional mimics of human milk oligosaccharides to complement infant formulas. This review provides an overview of exo-alpha-sialidases of bacteria present in the human gastrointestinal tract and some insights into their biological role and biotechnological applications.


Assuntos
Microbioma Gastrointestinal , Leite Humano , Humanos , Leite Humano/química , Neuraminidase/metabolismo , Polissacarídeos/análise , Ácidos Siálicos/metabolismo , Bactérias/metabolismo , Oligossacarídeos/química
3.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139191

RESUMO

Rotavirus (RV) is the leading cause of acute gastroenteritis (AGE) in children under 5 years old worldwide, and several studies have demonstrated that histo-blood group antigens (HBGAs) play a role in its infection process. In the present study, human stool filtrates from patients diagnosed with RV diarrhea (genotyped as P[8]) were used to infect differentiated Caco-2 cells (dCaco-2) to determine whether such viral strains of clinical origin had the ability to replicate in cell cultures displaying HBGAs. The cell culture-adapted human RV Wa model strain (P[8] genotype) was used as a control. A time-course analysis of infection was conducted in dCaco-2 at 1, 24, 48, 72, and 96 h. The replication of two selected clinical isolates and Wa was further assayed in MA104, undifferentiated Caco-2 (uCaco-2), HT29, and HT29-M6 cells, as well as in monolayers of differentiated human intestinal enteroids (HIEs). The results showed that the culture-adapted Wa strain replicated more efficiently in MA104 cells than other utilized cell types. In contrast, clinical virus isolates replicated more efficiently in dCaco-2 cells and HIEs. Furthermore, through surface plasmon resonance analysis of the interaction between the RV spike protein (VP8*) and its glycan receptor (the H antigen), the V7 RV clinical isolate showed 45 times better affinity compared to VP8* from the Wa strain. These findings support the hypothesis that the differences in virus tropism between clinical virus isolates and RV Wa could be a consequence of the different HBGA contents on the surface of the cell lines employed. dCaco-2, HT29, and HT29M6 cells and HIEs display HBGAs on their surfaces, whereas MA104 and uCaco-2 cells do not. These results indicate the relevance of using non-cell culture-adapted human RV to investigate the replication of rotavirus in relevant infection models.


Assuntos
Antígenos de Grupos Sanguíneos , Gastroenterite , Infecções por Rotavirus , Rotavirus , Criança , Humanos , Pré-Escolar , Rotavirus/metabolismo , Infecções por Rotavirus/genética , Células CACO-2 , Antígenos de Grupos Sanguíneos/metabolismo
4.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142552

RESUMO

Human noroviruses (HuNoVs) are the main cause of acute gastroenteritis causing more than 50,000 deaths per year. Recent evidence shows that the gut microbiota plays a key role in enteric virus infectivity. In this context, we tested whether microbiota depletion or microbiota replacement with that of human individuals susceptible to HuNoVs infection could favor viral replication in mice. Four groups of mice (n = 5) were used, including a control group and three groups that were treated with antibiotics to eliminate the autochthonous intestinal microbiota. Two of the antibiotic-treated groups received fecal microbiota transplantation from a pool of feces from infants (age 1-3 months) or an auto-transplantation with mouse feces that obtained prior antibiotic treatment. The inoculation of the different mouse groups with a HuNoVs strain (GII.4 Sydney [P16] genotype) showed that the virus replicated more efficiently in animals only treated with antibiotics but not subject to microbiota transplantation. Viral replication in animals receiving fecal microbiota from newborn infants was intermediate, whereas virus excretion in feces from auto-transplanted mice was as low as in the control mice. The analysis of the fecal microbiota by 16S rDNA NGS showed deep variations in the composition in the different mice groups. Furthermore, differences were observed in the gene expression of relevant immunological mediators, such as IL4, CXCL15, IL13, TNFα and TLR2, at the small intestine. Our results suggest that microbiota depletion eliminates bacteria that restrict HuNoVs infectivity and that the mechanism(s) could involve immune mediators.


Assuntos
Infecções por Caliciviridae , Norovirus , Animais , Antibacterianos/farmacologia , Bactérias/genética , DNA Ribossômico , Fezes/microbiologia , Humanos , Lactente , Interleucina-13 , Interleucina-4 , Camundongos , Norovirus/genética , Receptor 2 Toll-Like , Fator de Necrose Tumoral alfa
5.
PLoS Pathog ; 15(6): e1007865, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31226167

RESUMO

Rotavirus is the leading agent causing acute gastroenteritis in young children, with the P[8] genotype accounting for more than 80% of infections in humans. The molecular bases for binding of the VP8* domain from P[8] VP4 spike protein to its cellular receptor, the secretory H type-1 antigen (Fuc-α1,2-Gal-ß1,3-GlcNAc; H1), and to its precursor lacto-N-biose (Gal-ß1,3-GlcNAc; LNB) have been determined. The resolution of P[8] VP8* crystal structures in complex with H1 antigen and LNB and site-directed mutagenesis experiments revealed that both glycans bind to the P[8] VP8* protein through a binding pocket shared with other members of the P[II] genogroup (i.e.: P[4], P[6] and P[19]). Our results show that the L-fucose moiety from H1 only displays indirect contacts with P[8] VP8*. However, the induced conformational changes in the LNB moiety increase the ligand affinity by two-fold, as measured by surface plasmon resonance (SPR), providing a molecular explanation for the different susceptibility to rotavirus infection between secretor and non-secretor individuals. The unexpected interaction of P[8] VP8* with LNB, a building block of type-1 human milk oligosaccharides, resulted in inhibition of rotavirus infection, highlighting the role and possible application of this disaccharide as an antiviral. While key amino acids in the H1/LNB binding pocket were highly conserved in members of the P[II] genogroup, differences were found in ligand affinities among distinct P[8] genetic lineages. The variation in affinities were explained by subtle structural differences induced by amino acid changes in the vicinity of the binding pocket, providing a fine-tuning mechanism for glycan binding in P[8] rotavirus.


Assuntos
Sistema ABO de Grupos Sanguíneos/química , Antígenos Virais/química , Proteínas de Ligação a RNA/química , Rotavirus/química , Proteínas não Estruturais Virais/química , Sítios de Ligação , Proteínas do Capsídeo/química , Linhagem Celular , Cristalografia por Raios X , Humanos
6.
Appl Microbiol Biotechnol ; 101(1): 205-215, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27714445

RESUMO

Lacto-N-biose (LNB) and galacto-N-biose (GNB) are major building blocks of free oligosaccharides and glycan moieties of glyco-complexes present in human milk and gastrointestinal mucosa. We have previously characterized the phospho-ß-galactosidase GnbG from Lactobacillus casei BL23 that is involved in the metabolism of LNB and GNB. GnbG has been used here in transglycosylation reactions, and it showed the production of LNB and GNB with N-acetylglucosamine and N-acetylgalactosamine as acceptors, respectively. The reaction kinetics demonstrated that GnbG can convert 69 ± 4 and 71 ± 1 % of o-nitrophenyl-ß-D-galactopyranoside into LNB and GNB, respectively. Those reactions were performed in a semi-preparative scale, and the synthesized disaccharides were purified. The maximum yield obtained for LNB was 10.7 ± 0.2 g/l and for GNB was 10.8 ± 0.3 g/l. NMR spectroscopy confirmed the molecular structures of both carbohydrates and the absence of reaction byproducts, which also supports that GnbG is specific for ß1,3-glycosidic linkages. The purified sugars were subsequently tested for their potential prebiotic properties using Lactobacillus species. The results showed that LNB and GNB were fermented by the tested strains of L. casei, Lactobacillus rhamnosus (except L. rhamnosus strain ATCC 53103), Lactobacillus zeae, Lactobacillus gasseri, and Lactobacillus johnsonii. DNA hybridization experiments suggested that the metabolism of those disaccharides in 9 out of 10 L. casei strains, all L. rhamnosus strains and all L. zeae strains tested relies upon a phospho-ß-galactosidase homologous to GnbG. The results presented here support the putative role of human milk oligosaccharides for selective enrichment of beneficial intestinal microbiota in breast-fed infants.


Assuntos
Dissacarídeos/metabolismo , Glicosídeo Hidrolases/metabolismo , Mucosa Intestinal/metabolismo , Lactobacillus/metabolismo , Leite Humano/metabolismo , Prebióticos , Acetilgalactosamina/metabolismo , Acetilglucosamina/metabolismo , Dissacarídeos/química , Glicosilação , Cinética , Lactobacillus/enzimologia , Espectroscopia de Ressonância Magnética , Hibridização de Ácido Nucleico
7.
Appl Environ Microbiol ; 82(2): 570-7, 2016 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-26546429

RESUMO

Human milk oligosaccharides (HMOs) are considered to play a key role in establishing and maintaining the infant gut microbiota. Lacto-N-triose forms part of both type 1 and type 2 HMOs and also of the glycan moieties of glycoproteins. Upstream of the previously characterized gene cluster involved in lacto-N-biose and galacto-N-biose metabolism from Lactobacillus casei BL23, there are two genes, bnaG and manA, encoding a ß-N-acetylglucosaminidase precursor and a mannose-6-phosphate isomerase, respectively. In this work, we show that L. casei is able to grow in the presence of lacto-N-triose as a carbon source. Inactivation of bnaG abolished the growth of L. casei on this oligosaccharide, demonstrating that BnaG is involved in its metabolism. Interestingly, whole cells of a bnaG mutant were totally devoid of ß-N-acetylglucosaminidase activity, suggesting that BnaG is an extracellular wall-attached enzyme. In addition to hydrolyzing lacto-N-triose into N-acetylglucosamine and lactose, the purified BnaG enzyme also catalyzed the hydrolysis of 3'-N-acetylglucosaminyl-mannose and 3'-N-acetylgalactosaminyl-galactose. L. casei can be cultured in the presence of 3'-N-acetylglucosaminyl-mannose as a carbon source, but, curiously, the bnaG mutant strain was not impaired in its utilization. These results indicate that the assimilation of 3'-N-acetylglucosaminyl-mannose is independent of BnaG. Enzyme activity and growth analysis with a manA-knockout mutant showed that ManA is involved in the utilization of the mannose moiety of 3'-N-acetylglucosaminyl-mannose. Here we describe the physiological role of a ß-N-acetylglucosaminidase in lactobacilli, and it supports the metabolic adaptation of L. casei to the N-acetylglucosaminide-rich gut niche.


Assuntos
Acetilglucosaminidase/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/enzimologia , Lacticaseibacillus casei/enzimologia , Leite Humano/microbiologia , Trissacarídeos/metabolismo , Acetilglucosaminidase/genética , Proteínas de Bactérias/genética , Parede Celular/genética , Humanos , Lacticaseibacillus casei/genética , Lacticaseibacillus casei/crescimento & desenvolvimento , Lacticaseibacillus casei/metabolismo , Leite Humano/metabolismo , Oligossacarídeos/metabolismo
8.
Mol Microbiol ; 93(3): 521-38, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24942885

RESUMO

The probiotic Lactobacillus casei catabolizes galacto-N-biose (GNB) and lacto-N-biose (LNB) by using a transport system and metabolic routes different from those of Bifidobacterium. L. casei contains a gene cluster, gnbREFGBCDA, involved in the metabolism of GNB, LNB and also N-acetylgalactosamine. Inactivation of gnbC (EIIC) or ptsI (Enzyme I) of the phosphoenolpyruvate : sugar phosphotransferase system (PTS) prevented the growth on those three carbohydrates, indicating that they are transported and phosphorylated by the same PTS(Gnb) . Enzyme activities and growth analysis with knockout mutants showed that GnbG (phospho-ß-galactosidase) hydrolyses both disaccharides. However, GnbF (N-acetylgalactosamine-6P deacetylase) and GnbE (galactosamine-6P isomerase/deaminase) are involved in GNB but not in LNB fermentation. The utilization of LNB depends on nagA (N-acetylglucosamine-6P deacetylase), showing that the N-acetylhexosamine moieties of GNB and LNB follow different catabolic routes. A lacAB mutant (galactose-6P isomerase) was impaired in GNB and LNB utilization, indicating that their galactose moiety is channelled through the tagatose-6P pathway. Transcriptional analysis showed that the gnb operon is regulated by substrate-specific induction mediated by the transcriptional repressor GnbR, which binds to a 26 bp DNA region containing inverted repeats exhibiting a 2T/2A conserved core. The data represent the first characterization of novel metabolic pathways for human milk oligosaccharides and glycoconjugate structures in Firmicutes.


Assuntos
Acetilglucosamina/análogos & derivados , Dissacarídeos/metabolismo , Lacticaseibacillus casei/genética , Lacticaseibacillus casei/metabolismo , Leite Humano/química , Mucosa/química , Família Multigênica , Fosfoenolpiruvato/metabolismo , Acetilglucosamina/metabolismo , Proteínas de Bactérias/metabolismo , Galactose/metabolismo , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Genes Bacterianos , Humanos , Mutação , Óperon , Polissacarídeos , Reação em Cadeia da Polimerase em Tempo Real , beta-Galactosidase/genética
9.
Appl Environ Microbiol ; 81(11): 3880-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25819967

RESUMO

L-Fucose is a sugar present in human secretions as part of human milk oligosaccharides, mucins, and other glycoconjugates in the intestinal epithelium. The genome of the probiotic Lactobacillus rhamnosus GG (LGG) carries a gene cluster encoding a putative L-fucose permease (fucP), L-fucose catabolic pathway (fucI, fucK, fucU, and fucA), and a transcriptional regulator (fucR). The metabolism of L-fucose in LGG results in 1,2-propanediol production, and their fucI and fucP mutants displayed a severe and mild growth defect on L-fucose, respectively. Transcriptional analysis revealed that the fuc genes are induced by L-fucose and subject to a strong carbon catabolite repression effect. This induction was triggered by FucR, which acted as a transcriptional activator necessary for growth on L-fucose. LGG utilized fucosyl-α1,3-N-acetylglucosamine and contrarily to other lactobacilli, the presence of fuc genes allowed this strain to use the L-fucose moiety. In fucI and fucR mutants, but not in fucP mutant, L-fucose was not metabolized and it was excreted to the medium during growth on fucosyl-α1,3-N-acetylglucosamine. The fuc genes were induced by this fucosyl-disaccharide in the wild type and the fucP mutant but not in a fucI mutant, showing that FucP does not participate in the regulation of fuc genes and that L-fucose metabolism is needed for FucR activation. The l-fucose operon characterized here constitutes a new example of the many factors found in LGG that allow this strain to adapt to the gastrointestinal conditions.


Assuntos
Fucose/biossíntese , Lacticaseibacillus rhamnosus/genética , Lacticaseibacillus rhamnosus/fisiologia , Redes e Vias Metabólicas , Óperon , Propilenoglicol/metabolismo , Adaptação Fisiológica , Meios de Cultura/química , Trato Gastrointestinal/microbiologia , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Humanos , Lacticaseibacillus rhamnosus/crescimento & desenvolvimento , Probióticos
10.
Appl Microbiol Biotechnol ; 99(17): 7165-76, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25977209

RESUMO

Fucosyl-N-acetylglucosamine disaccharides are important core structures that form part of human mucosal and milk glyco-complexes. We have previously shown that AlfB and AlfC α-L-fucosidases from Lactobacillus casei are able to synthesize fucosyl-α-1,3--N-acetylglucosamine (Fuc-α1,3-GlcNAc) and fucosyl-α-1,6-N-acetylglucosamine (Fuc-α1,6-GlcNAc), respectively, in transglycosylation reactions. Here, these reactions were performed in a semipreparative scale, and the produced disaccharides were purified. The maximum yields obtained of Fuc-α1,3-GlcNAc and Fuc-α1,6-GlcNAc were 4.2 and 9.3 g/l, respectively. The purified fucosyl-disaccharides were then analyzed for their prebiotic effect in vitro using strains from the Lactobacillus casei/paracasei/rhamnosus group and from Bifidobacterium species. The results revealed that 6 out of 11 L. casei strains and 2 out of 6 L. rhamnosus strains tested were able to ferment Fuc-α1,3-GlcNAc, and L. casei BL87 and L. rhamnosus BL327 strains were also able to ferment Fuc-α1,6-GlcNAc. DNA hybridization experiments suggested that the metabolism of Fuc-α1,3-GlcNAc in those strains relies in an α-L-fucosidase homologous to AlfB. Bifidobacterium breve and Bibidobacterium pseudocatenolatum species also metabolized Fuc-α1,3-GlcNAc. Notably, L-fucose was excreted from all the Lactobacillus and Bifidobacterium strains fermenting fucosyl-disaccharides, except from strains L. rhamnosus BL358 and BL377, indicating that in these latest strains, L-fucose was catabolized. The fucosyl-disaccharides were also tested for their inhibitory potential of pathogen adhesion to human colon adenocarcinoma epithelial (HT29) cell line. Enteropathogenic Escherichia coli (EPEC) strains isolated from infantile gastroenteritis were used, and the results showed that both fucosyl-disaccharides inhibited adhesion to different extents of certain EPEC strains to HT29 cells in tissue culture.


Assuntos
Acetilglucosamina/análogos & derivados , Aderência Bacteriana/efeitos dos fármacos , Bifidobacterium/metabolismo , Dissacarídeos/metabolismo , Escherichia coli/efeitos dos fármacos , Lacticaseibacillus casei/metabolismo , Prebióticos/administração & dosagem , Acetilglucosamina/isolamento & purificação , Acetilglucosamina/metabolismo , Bifidobacterium/genética , Linhagem Celular , Dissacarídeos/isolamento & purificação , Células Epiteliais/microbiologia , Escherichia coli/fisiologia , Fermentação , Humanos , Lacticaseibacillus casei/genética , Hibridização de Ácido Nucleico , Homologia de Sequência
11.
Appl Environ Microbiol ; 79(12): 3847-50, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23542622

RESUMO

AlfB and AlfC α-l-fucosidases from Lactobacillus casei were used in transglycosylation reactions, and they showed high efficiency in synthesizing fucosyldisaccharides. AlfB and AlfC activities exclusively produced fucosyl-α-1,3-N-acetylglucosamine and fucosyl-α-1,6-N-acetylglucosamine, respectively. The reaction kinetics showed that AlfB can convert 23% p-nitrophenyl-α-l-fucopyranoside into fucosyl-α-1,3-N-acetylglucosamine and AlfC at up to 56% into fucosyl-α-1,6-N-acetylglucosamine.


Assuntos
Acetilglucosamina/análogos & derivados , Reatores Biológicos , Dissacarídeos/biossíntese , Lacticaseibacillus casei/enzimologia , alfa-L-Fucosidase/metabolismo , Acetilglucosamina/biossíntese , Biotecnologia/métodos , Estabilidade Enzimática , Cinética , Espectroscopia de Ressonância Magnética
12.
Appl Environ Microbiol ; 78(13): 4613-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22544237

RESUMO

We have previously characterized from Lactobacillus casei BL23 three α-L-fucosidases, AlfA, AlfB, and AlfC, which hydrolyze in vitro natural fucosyl-oligosaccharides. In this work, we have shown that L. casei is able to grow in the presence of fucosyl-α-1,3-N-acetylglucosamine (Fuc-α-1,3-GlcNAc) as a carbon source. Interestingly, L. casei excretes the L-fucose moiety during growth on Fuc-α-1,3-GlcNAc, indicating that only the N-acetylglucosamine moiety is being metabolized. Analysis of the genomic sequence of L. casei BL23 shows that downstream from alfB, which encodes the α-L-fucosidase AlfB, a gene, alfR, that encodes a transcriptional regulator is present. Divergently from alfB, three genes, alfEFG, that encode proteins with homology to the enzyme IIAB (EIIAB), EIIC, and EIID components of a mannose-class phosphoenolpyruvate:sugar phosphotransferase system (PTS) are present. Inactivation of either alfB or alfF abolishes the growth of L. casei on Fuc-α-1,3-GlcNAc. This proves that AlfB is involved in Fuc-α-1,3-GlcNAc metabolism and that the transporter encoded by alfEFG participates in the uptake of this disaccharide. A mutation in the PTS general component enzyme I does not eliminate the utilization of Fuc-α-1,3-GlcNAc, suggesting that the transport via the PTS encoded by alfEFG is not coupled to phosphorylation of the disaccharide. Transcriptional analysis with alfR and ccpA mutants shows that the two gene clusters alfBR and alfEFG are regulated by substrate-specific induction mediated by the inactivation of the transcriptional repressor AlfR and by carbon catabolite repression mediated by the catabolite control protein A (CcpA). This work reports for the first time the characterization of the physiological role of an α-L-fucosidase in lactic acid bacteria and the utilization of Fuc-α-1,3-GlcNAc as a carbon source for bacteria.


Assuntos
Acetilglucosamina/metabolismo , Fucose/metabolismo , Lacticaseibacillus casei/metabolismo , Carbono/metabolismo , Fermentação , Deleção de Genes , Perfilação da Expressão Gênica , Ordem dos Genes , Lacticaseibacillus casei/genética , Lacticaseibacillus casei/crescimento & desenvolvimento , Redes e Vias Metabólicas/genética , Família Multigênica
13.
Appl Environ Microbiol ; 78(14): 5013-5, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22582052

RESUMO

Two novel phytases have been characterized from Bifidobacterium pseudocatenulatum and Bifidobacterium longum subsp. infantis. The enzymes belong to a new subclass within the histidine acid phytases, are highly specific for the hydrolysis of phytate, and render myo-inositol triphosphate as the final hydrolysis product. They represent the first phytases characterized from this group of probiotic microorganisms, opening the possibilities for their use in the processing of high-phytate-content foods.


Assuntos
6-Fitase/genética , Bifidobacterium/classificação , Bifidobacterium/enzimologia , Ácido Fítico/metabolismo , Probióticos , 6-Fitase/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bifidobacterium/genética , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Reação em Cadeia da Polimerase , Especificidade por Substrato , Temperatura
14.
Biotechnol Bioeng ; 109(7): 1704-12, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22383248

RESUMO

UDP-sugars are used as glycosyl donors in many enzymatic glycosylation processes. In bacteria UDP-N-acetylglucosamine (UDP-GlcNAc) is synthesized from fructose-6-phosphate by four successive reactions catalyzed by three enzymes: Glucosamine-6-phosphate synthase (GlmS), phosphoglucosamine mutase (GlmM), and the bi-functional enzyme glucosamine-1-phosphate acetyltransferase/N-acetylglucosamine-1-phosphate uridyltransferase (GlmU). In this work several metabolic engineering strategies, aimed to increment UDP-GlcNAc biosynthesis, were applied in the probiotic bacterium Lactobacillus casei strain BL23. This strain does not produce exopolysaccharides, therefore it could be a suitable host for the production of oligosaccharides. The genes glmS, glmM, and glmU coding for GlmS, GlmM, and GlmU activities in L. casei BL23, respectively, were identified, cloned and shown to be functional by homologous over-expression. The recombinant L. casei strain over-expressing simultaneously the genes glmM and glmS showed a 3.47 times increase in GlmS activity and 6.43 times increase in GlmM activity with respect to the control strain. Remarkably, these incremented activities resulted in about fourfold increase of the UDP-GlcNAc pool. In L. casei BL23 wild type strain transcriptional analyses showed that glmM and glmU are constitutively transcribed. By contrast, glmS transcription is down-regulated with a 21-fold decrease of glmS mRNA in cells cultured with N-acetylglucosamine as the sole carbon source compared to cells cultured with glucose. Our results revealed for the first time that GlmS, GlmM, and GlmU are responsible for UDP-GlcNAc biosynthesis in lactobacilli.


Assuntos
Microbiologia Industrial/métodos , Lacticaseibacillus casei/enzimologia , Lacticaseibacillus casei/genética , Engenharia Metabólica/métodos , Uridina Difosfato N-Acetilglicosamina/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/genética , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Lacticaseibacillus casei/metabolismo , Fosfoglucomutase/genética , Fosfoglucomutase/metabolismo , RNA Mensageiro/genética , Regulação para Cima , Uridina Difosfato N-Acetilglicosamina/genética
15.
Microbiol Spectr ; 10(4): e0177522, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35943155

RESUMO

The gastrointestinal microbiota members produce α-l-fucosidases that play key roles in mucosal, human milk, and dietary oligosaccharide assimilation. Here, 36 open reading frames (ORFs) coding for putative α-l-fucosidases belonging to glycosyl hydrolase family 29 (GH29) were identified through metagenome analysis of breast-fed infant fecal microbiome. Twenty-two of those ORFs showed a complete coding sequence with deduced amino acid sequences displaying the highest degree of identity with α-l-fucosidases from Bacteroides thetaiotaomicron, Bacteroides caccae, Phocaeicola vulgatus, Phocaeicola dorei, Ruminococcus gnavus, and Streptococcus parasanguinis. Based on sequence homology, 10 α-l-fucosidase genes were selected for substrate specificity characterization. The α-l-fucosidases Fuc18, Fuc19A, Fuc35B, Fuc39, and Fuc1584 showed hydrolytic activity on α1,3/4-linked fucose present in Lewis blood antigens and the human milk oligosaccharide (HMO) 3-fucosyllactose. In addition, Fuc1584 also hydrolyzed fucosyl-α-1,6-N-acetylglucosamine (6FN), a component of the core fucosylation of N-glycans. Fuc35A and Fuc193 showed activity on α1,2/3/4/6 linkages from H type-2, Lewis blood antigens, HMOs and 6FN. Fuc30 displayed activity only on α1,6-linked l-fucose, and Fuc5372 showed a preference for α1,2 linkages. Fuc2358 exhibited a broad substrate specificity releasing l-fucose from all the tested free histo-blood group antigens, HMOs, and 6FN. This latest enzyme also displayed activity in glycoconjugates carrying lacto-N-fucopentaose II (Lea) and lacto-N-fucopentaose III (Lex) and in the glycoprotein mucin. Fuc18, Fuc19A, and Fuc39 also removed l-fucose from neoglycoproteins and human α-1 acid glycoprotein. These results give insight into the great diversity of α-l-fucosidases from the infant gut microbiota, thus supporting the hypothesis that fucosylated glycans are crucial for shaping the newborn microbiota composition. IMPORTANCE α-l-Fucosyl residues are frequently present in many relevant glycans, such as human milk oligosaccharides (HMOs), histo-blood group antigens (HBGAs), and epitopes on cell surface glycoconjugate receptors. These fucosylated glycans are involved in a number of mammalian physiological processes, including adhesion of pathogens and immune responses. The modulation of l-fucose content in such processes may provide new insights and knowledge regarding molecular interactions and may help to devise new therapeutic strategies. Microbial α-l-fucosidases are exoglycosidases that remove α-l-fucosyl residues from free oligosaccharides and glycoconjugates and can be also used in transglycosylation reactions to synthesize oligosaccharides. In this work, α-l-fucosidases from the GH29 family were identified and characterized from the metagenome of fecal samples of breastfed infants. These enzymes showed different substrate specificities toward HMOs, HBGAs, naturally occurring glycoproteins, and neoglycoproteins. These novel glycosidase enzymes from the breast-fed infant gut microbiota, which resulted in a good source of α-l-fucosidases, have great biotechnological potential.


Assuntos
Antígenos de Grupos Sanguíneos , Microbioma Gastrointestinal , Animais , Antígenos de Grupos Sanguíneos/análise , Antígenos de Grupos Sanguíneos/metabolismo , Fucose/análise , Fucose/química , Fucose/metabolismo , Glicoconjugados/análise , Glicoconjugados/metabolismo , Humanos , Lactente , Recém-Nascido , Mamíferos/genética , Mamíferos/metabolismo , Metagenoma , Leite Humano/química , Leite Humano/metabolismo , Oligossacarídeos/análise , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Polissacarídeos , alfa-L-Fucosidase/química , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo
16.
Appl Environ Microbiol ; 77(2): 703-5, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21097595

RESUMO

Three putative α-L-fucosidases encoded in the Lactobacillus casei BL23 genome were cloned and purified. The proteins displayed different abilities to hydrolyze natural fucosyloligosaccharides like 2'-fucosyllactose, H antigen disaccharide, H antigen type II trisaccharide, and 3'-, 4'-, and 6'-fucosyl-GlcNAc. This indicated a possible role in the utilization of oligosaccharides present in human milk and intestinal mucosa.


Assuntos
Lacticaseibacillus casei/enzimologia , Oligossacarídeos/metabolismo , alfa-L-Fucosidase/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Humanos , Hidrólise , Probióticos , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/isolamento & purificação
17.
Sci Rep ; 11(1): 23328, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857830

RESUMO

Much evidence suggests a role for human milk oligosaccharides (HMOs) in establishing the infant microbiota in the large intestine, but the response of particular bacteria to individual HMOs is not well known. Here twelve bacterial strains belonging to the genera Bifidobacterium, Enterococcus, Limosilactobacillus, Lactobacillus, Lacticaseibacillus, Staphylococcus and Streptococcus were isolated from infant faeces and their growth was analyzed in the presence of the major HMOs, 2'-fucosyllactose (2'FL), 3-fucosyllactose (3FL), 2',3-difucosyllactose (DFL), lacto-N-tetraose (LNT) and lacto-N-neo-tetraose (LNnT), present in human milk. Only the isolated Bifidobacterium strains demonstrated the capability to utilize these HMOs as carbon sources. Bifidobacterium infantis Y538 efficiently consumed all tested HMOs. Contrarily, Bifidobacterium dentium strains Y510 and Y521 just metabolized LNT and LNnT. Both tetra-saccharides are hydrolyzed into galactose and lacto-N-triose (LNTII) by B. dentium. Interestingly, this species consumed only the galactose moiety during growth on LNT or LNnT, and excreted the LNTII moiety. Two ß-galactosidases were characterized from B. dentium Y510, Bdg42A showed the highest activity towards LNT, hydrolyzing it into galactose and LNTII, and Bdg2A towards lactose, degrading efficiently also 6'-galactopyranosyl-N-acetylglucosamine, N-acetyl-lactosamine and LNnT. The work presented here supports the hypothesis that HMOs are mainly metabolized by Bifidobacterium species in the infant gut.


Assuntos
Bifidobacterium/fisiologia , Fezes/microbiologia , Galactose/metabolismo , Trato Gastrointestinal/microbiologia , Leite Humano/metabolismo , Oligossacarídeos/metabolismo , Galactosidases/metabolismo , Humanos , Lactente , Leite Humano/microbiologia , Trissacarídeos/metabolismo
18.
Gut Microbes ; 13(1): 1-20, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33938391

RESUMO

Human milk glycans present a unique diversity of structures that suggest different mechanisms by which they may affect the infant microbiome development. A humanized mouse model generated by infant fecal transplantation was utilized here to evaluate the impact of fucosyl-α1,3-GlcNAc (3FN), fucosyl-α1,6-GlcNAc, lacto-N-biose (LNB) and galacto-N-biose on the fecal microbiota and host-microbiota interactions. 16S rRNA amplicon sequencing showed that certain bacterial genera significantly increased (Ruminococcus and Oscillospira) or decreased (Eubacterium and Clostridium) in all disaccharide-supplemented groups. Interestingly, cluster analysis differentiates the consumption of fucosyl-oligosaccharides from galactosyl-oligosaccharides, highlighting the disappearance of Akkermansia genus in both fucosyl-oligosaccharides. An increment of the relative abundance of Coprococcus genus was only observed with 3FN. As well, LNB significantly increased the relative abundance of Bifidobacterium, whereas the absolute levels of this genus, as measured by quantitative real-time PCR, did not significantly increase. OTUs corresponding to the species Bifidobacterium longum, Bifidobacterium adolescentis and Ruminococcus gnavus were not present in the control after the 3-week intervention, but were shared among the donor and specific disaccharide groups, indicating that their survival is dependent on disaccharide supplementation. The 3FN-feeding group showed increased levels of butyrate and acetate in the colon, and decreased levels of serum HDL-cholesterol. 3FN also down-regulated the pro-inflammatory cytokine TNF-α and up-regulated the anti-inflammatory cytokines IL-10 and IL-13, and the Toll-like receptor 2 in the large intestine tissue. The present study revealed that the four disaccharides show efficacy in producing beneficial compositional shifts of the gut microbiota and in addition, the 3FN demonstrated physiological and immunomodulatory roles.


Assuntos
Bactérias/metabolismo , Dissacarídeos/metabolismo , Microbioma Gastrointestinal , Leite Humano/metabolismo , Acetatos/metabolismo , Adulto , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Butiratos/metabolismo , DNA Bacteriano/genética , Dissacarídeos/análise , Fezes/microbiologia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Leite Humano/química , RNA Ribossômico 16S/genética , Adulto Jovem
19.
Biomedicines ; 9(7)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34356911

RESUMO

Intestinal microbiota-virus-host interaction has emerged as a key factor in mediating enteric virus pathogenicity. With the aim of analyzing whether human gut bacteria improve the inefficient replication of human rotavirus in mice, we performed fecal microbiota transplant (FMT) with healthy infants as donors in antibiotic-treated mice. We showed that a simple antibiotic treatment, irrespective of FMT, resulted in viral shedding for 6 days after challenge with the human rotavirus G1P[8] genotype Wa strain (RVwa). Rotavirus titers in feces were also significantly higher in antibiotic-treated animals with or without FMT but they were decreased in animals subject to self-FMT, where a partial re-establishment of specific bacterial taxons was evidenced. Microbial composition analysis revealed profound changes in the intestinal microbiota of antibiotic-treated animals, whereas some bacterial groups, including members of Lactobacillus, Bilophila, Mucispirillum, and Oscillospira, recovered after self-FMT. In antibiotic-treated and FMT animals where the virus replicated more efficiently, differences were observed in gene expression of immune mediators, such as IL1ß and CXCL15, as well as in the fucosyltransferase FUT2, responsible for H-type antigen synthesis in the small intestine. Collectively, our results suggest that antibiotic-induced microbiota depletion eradicates the microbial taxa that restrict human rotavirus infectivity in mice.

20.
BMC Genomics ; 11: 504, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20849602

RESUMO

BACKGROUND: Comparative genomic hybridization (CGH) constitutes a powerful tool for identification and characterization of bacterial strains. In this study we have applied this technique for the characterization of a number of Lactobacillus strains isolated from the intestinal content of rats fed with a diet supplemented with sorbitol. RESULTS: Phylogenetic analysis based on 16S rRNA gene, recA, pheS, pyrG and tuf sequences identified five bacterial strains isolated from the intestinal content of rats as belonging to the recently described Lactobacillus taiwanensis species. DNA-DNA hybridization experiments confirmed that these five strains are distinct but closely related to Lactobacillus johnsonii and Lactobacillus gasseri. A whole genome DNA microarray designed for the probiotic L. johnsonii strain NCC533 was used for CGH analysis of L. johnsonii ATCC 33200T, L. johnsonii BL261, L. gasseri ATCC 33323T and L. taiwanensis BL263. In these experiments, the fluorescence ratio distributions obtained with L. taiwanensis and L. gasseri showed characteristic inter-species profiles. The percentage of conserved L. johnsonii NCC533 genes was about 83% in the L. johnsonii strains comparisons and decreased to 51% and 47% for L. taiwanensis and L. gasseri, respectively. These results confirmed the separate status of L. taiwanensis from L. johnsonii at the level of species, and also that L. taiwanensis is closer to L. johnsonii than L. gasseri is to L. johnsonii. CONCLUSION: Conventional taxonomic analyses and microarray-based CGH analysis have been used for the identification and characterization of the newly species L. taiwanensis. The microarray-based CGH technology has been shown as a remarkable tool for the identification and fine discrimination between phylogenetically close species, and additionally provided insight into the adaptation of the strain L. taiwanensis BL263 to its ecological niche.


Assuntos
Hibridização Genômica Comparativa/métodos , Genoma Bacteriano/genética , Genômica/métodos , Lactobacillus/genética , Filogenia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência Conservada/genética , DNA Bacteriano/genética , Eletroforese em Gel de Poliacrilamida , Regulação Bacteriana da Expressão Gênica , Loci Gênicos/genética , Lactobacillus/isolamento & purificação , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , RNA Ribossômico 16S/genética , Ratos , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA