Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Public Health ; 21(1): 1750, 2021 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-34563151

RESUMO

BACKGROUND: The Western Pacific Region (WPR) is exposed each year to seasonal influenza and is often the source of new influenza virus variants and novel pathogen emergence. National influenza surveillance systems play a critical role in detecting emerging viruses, monitoring influenza epidemics, improving public disease awareness and promoting pandemic preparedness, but vary widely across WPR countries. The aim of this study is to improve existing influenza surveillance systems by systematically comparing selected WPR influenza surveillance systems. METHODS: Three national influenza surveillance systems with different levels of development (Australia, China and Malaysia) were compared and their adherence to World Health Organization (WHO) guidance was evaluated using a structured framework previously tested in several European countries consisting of seven surveillance sub-systems, 19 comparable outcomes and five evaluation criteria. Based on the results, experts from the Asia-Pacific Alliance for the Control of Influenza (APACI) issued recommendations for the improvement of existing surveillance systems. RESULTS: Australia demonstrated the broadest scope of influenza surveillance followed by China and Malaysia. In Australia, surveillance tools covered all sub-systems. In China, surveillance did not cover non-medically attended respiratory events, primary care consultations, and excess mortality modelling. In Malaysia, surveillance consisted of primary care and hospital sentinel schemes. There were disparities between the countries across the 5 evaluation criteria, particularly regarding data granularity from health authorities, information on data representativeness, and data communication, especially the absence of publicly available influenza epidemiological reports in Malaysia. This dual approach describing the scope of surveillance and evaluating the adherence to WHO guidance enabled APACI experts to make a number of recommendations for each country that included but were not limited to introducing new surveillance tools, broadening the use of specific existing surveillance tools, collecting and sharing data on virus characteristics, developing immunization status registries, and improving public health communication. CONCLUSIONS: Influenza monitoring in Australia, China, and Malaysia could benefit from the expansion of existing surveillance sentinel schemes, the broadened use of laboratory confirmation and the introduction of excess-mortality modelling. The results from the evaluation can be used as a basis to support expert recommendations and to enhance influenza surveillance capabilities.


Assuntos
Influenza Humana , Orthomyxoviridae , Austrália/epidemiologia , China/epidemiologia , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Malásia/epidemiologia
2.
Expert Rev Anti Infect Ther ; 13(6): 731-40, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25872683

RESUMO

Dengue is currently the most rapidly spreading vector-borne disease, with an increasing burden over recent decades. Currently, neither a licensed vaccine nor an effective anti-viral therapy is available, and treatment largely remains supportive. Current vector control strategies to prevent and reduce dengue transmission are neither efficient nor sustainable as long-term interventions. Increased globalization and climate change have been reported to influence dengue transmission. In this article, we reviewed the non-climatic and climatic risk factors which facilitate dengue transmission. Sustainable and effective interventions to reduce the increasing threat from dengue would require the integration of these risk factors into current and future prevention strategies, including dengue vaccination, as well as the continuous support and commitment from the political and environmental stakeholders.


Assuntos
Aedes/parasitologia , Mudança Climática , Dengue/transmissão , Insetos Vetores/parasitologia , Internacionalidade , Animais , Análise por Conglomerados , Dengue/prevenção & controle , Surtos de Doenças , Humanos , Imunidade Coletiva , Fatores de Risco , Sorogrupo , Temperatura
3.
Lancet ; 361(9371): 1779-85, 2003 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-12781537

RESUMO

BACKGROUND: The cause of severe acute respiratory syndrome (SARS) has been identified as a new coronavirus. Whole genome sequence analysis of various isolates might provide an indication of potential strain differences of this new virus. Moreover, mutation analysis will help to develop effective vaccines. METHODS: We sequenced the entire SARS viral genome of cultured isolates from the index case (SIN2500) presenting in Singapore, from three primary contacts (SIN2774, SIN2748, and SIN2677), and one secondary contact (SIN2679). These sequences were compared with the isolates from Canada (TOR2), Hong Kong (CUHK-W1 and HKU39849), Hanoi (URBANI), Guangzhou (GZ01), and Beijing (BJ01, BJ02, BJ03, BJ04). FINDINGS: We identified 129 sequence variations among the 14 isolates, with 16 recurrent variant sequences. Common variant sequences at four loci define two distinct genotypes of the SARS virus. One genotype was linked with infections originating in Hotel M in Hong Kong, the second contained isolates from Hong Kong, Guangzhou, and Beijing with no association with Hotel M (p<0.0001). Moreover, other common sequence variants further distinguished the geographical origins of the isolates, especially between Singapore and Beijing. INTERPRETATION: Despite the recent onset of the SARS epidemic, genetic signatures are emerging that partition the worldwide SARS viral isolates into groups on the basis of contact source history and geography. These signatures can be used to trace sources of infection. In addition, a common variant associated with a non-conservative aminoacid change in the S1 region of the spike protein, suggests that immunological pressures might be starting to influence the evolution of the SARS virus in human populations.


Assuntos
Genoma Viral , Mutação , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Sequência de Aminoácidos , Sequência de Bases , Humanos , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Polimorfismo Genético , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/classificação , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/isolamento & purificação , Singapura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA