Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 64(2): 794-801, 1990 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-2296083

RESUMO

Previous studies with adenovirus mutants have indicated that a 10,400-molecular-weight (10.4K) protein predicted to be coded by an open reading frame in region E3 of adenovirus functions to down regulate the epidermal growth factor receptor (C. R. Carlin, A. E. Tollefson, H. A. Brady, B. L. Hoffman, and W. S. M. Wold, Cell 57:135-144, 1989). We now demonstrate that the 10.4K protein is in fact synthesized in cells infected by group C adenoviruses. This was done by immunoprecipitation of 10.4K from cells infected by a variety of E3 mutants, using antisera against three different synthetic peptides corresponding to the predicted 10.4K sequence. The 10.4K protein was translated primarily from E3 mRNA f, as indicated by cell-free translation of mRNA purified by hybridization from cells infected with an RNA processing mutant that synthesizes predominantly mRNA f. The 10.4K protein was overproduced or underproduced in vivo, respectively, by mutants that overproduce or underproduce E3 mRNA f, also indicating that the 10.4K protein is translated primarily from mRNA f. The 10.4K protein migrated as two bands with apparent molecular weights of 16,000 and 11,000 (10 to 18% gradient gels); both bands contained 10.4K epitopes, as shown by Western blot (immunoblot). Only the 16K band was obtained by cell-free translation, suggesting that the 16K protein is the precursor to the 11K protein. The 10.4K protein is a membrane protein, as shown by cell fractionation experiments and as predicted from its sequence. The predicted 10.4K sequence as well as a putative N-terminal signal sequence and 30-residue transmembrane domain are conserved in adenovirus types 2 and 5 (group C) and in types 3, 7, and 35 (group B).


Assuntos
Adenovírus Humanos/genética , Genes Virais , Proteínas de Membrana/genética , Proteínas Estruturais Virais/genética , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular , Deleção Cromossômica , Genes Reguladores , Humanos , Células KB , Proteínas de Membrana/isolamento & purificação , Dados de Sequência Molecular , Peso Molecular , Mutação , Homologia de Sequência do Ácido Nucleico
2.
J Virol ; 69(1): 172-81, 1995 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-7983708

RESUMO

The adenovirus type 2 and 5 E3 10,400- and 14,500-molecular-weight (10.4K and 14.5K) proteins are both required to protect some cell lines from lysis by tumor necrosis factor and to down-regulate the epidermal growth factor receptor. We have shown previously that both 10.4K and 14.5K are integral membrane proteins and that 14.5K is phosphorylated and O glycosylated. The 10.4K protein coimmunoprecipitates with 14.5K, indicating that the two proteins function as a complex. Here we show, using immunofluorescence and two different cell surface-labeling techniques, that both proteins are localized in the plasma membrane. In addition, we show that trafficking of each protein to the plasma membrane depends on concomitant expression of the other protein. Finally, neither protein could be immunoprecipitated from conditioned media, indicating that neither is secreted. Taken together, these results suggest that the plasma membrane is the site at which 10.4K and 14.5K function to inhibit cytolysis by tumor necrosis factor and to down-regulate the epidermal growth factor receptor.


Assuntos
Proteínas E3 de Adenovirus/fisiologia , Receptores ErbB/metabolismo , Proteínas de Membrana/fisiologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Sequência de Aminoácidos , Morte Celular , Células Cultivadas , Regulação para Baixo , Humanos , Dados de Sequência Molecular , Processamento de Proteína Pós-Traducional , Frações Subcelulares/metabolismo
3.
J Virol ; 64(3): 1124-34, 1990 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-2154597

RESUMO

We describe the characterization of the herpes simplex virus type 2 (HSV-2) gene encoding infected cell protein 32 (ICP32) and virion protein 19c (VP19c). We also demonstrate that the HSV-1 UL38/ORF.553 open reading frame (ORF), which has been shown to specify a viral protein essential for capsid formation (B. Pertuiset, M. Boccara, J. Cebrian, N. Berthelot, S. Chousterman, F. Puvian-Dutilleul, J. Sisman, and P. Sheldrick, J. Virol. 63: 2169-2179, 1989), must encode the cognate HSV type 1 (HSV-1) ICP32/VP19c protein. The region of the HSV-2 genome deduced to contain the gene specifying ICP32/VP19c was isolated and subcloned, and the nucleotide sequence of 2,158 base pairs of HSV-2 DNA mapping immediately upstream of the gene encoding the large subunit of the viral ribonucleotide reductase was determined. This region of the HSV-2 genome contains a large ORF capable of encoding two related 50,538- and 49,472-molecular-weight polypeptides. Direct evidence that this ORF encodes HSV-2 ICP32/VP19c was provided by immunoblotting experiments that utilized antisera directed against synthetic oligopeptides corresponding to internal portions of the predicted polypeptides encoded by the HSV-2 ORF or antisera directed against a TrpE/HSV-2 ORF fusion protein. The type-common immunoreactivity of the two antisera and comparison of the primary amino acid sequences of the predicted products of the HSV-2 ORF and the equivalent genomic region of HSV-1 provided evidence that the HSV-1 UL38 ORF encodes the HSV-1 ICP32/VP19c. Analysis of the expression of the HSV-1 and HSV-2 ICP32/VP19c cognate proteins indicated that there may be differences in their modes of synthesis. Comparison of the predicted structure of the HSV-2 ICP32/VP19c protein with the structures of related proteins encoded by other herpes viruses suggested that the internal capsid architecture of the herpes family of viruses varies substantially.


Assuntos
Proteínas do Capsídeo , Capsídeo/genética , Genes Virais , Simplexvirus/genética , Proteínas Estruturais Virais/genética , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular , Replicação do DNA/efeitos dos fármacos , DNA Viral/genética , Humanos , Dados de Sequência Molecular , Peptídeos/síntese química , Ácido Fosfonoacéticos/farmacologia , Conformação Proteica , Mapeamento por Restrição , Homologia de Sequência do Ácido Nucleico , Simplexvirus/efeitos dos fármacos
4.
J Virol ; 65(6): 3095-105, 1991 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-1851870

RESUMO

In adenovirus-infected cells, the epidermal growth factor receptor (EGF-R) is internalized from the cell surface via endosomes and is degraded, and the E3 10,400-dalton protein (10.4K protein) is required for this effect (C. R. Carlin, A. E. Tollefson, H. A. Brady, B. L. Hoffman, and W. S. M. Wold, Cell 57:135-144, 1989). We now report that both the E3 10.4K and E3 14.5K proteins are required for this down-regulation of EGF-R in adenovirus-infected cells. Down-regulation of cell surface EGF-R was demonstrated by results from several methods, namely the absence of EGF-R autophosphorylation in an immune complex kinase assay, the inability to iodinate EGF-R on the cell surface, the formation of endosomes containing EGF-R as detected by immunofluorescence, and the degradation of the metabolically [35S]Met-labeled fully processed 170K species of EGF-R. No effect on the initial synthesis of EGF-R was observed. This down-regulation was ascribed to the 10.4K and 14.5K proteins through the analysis of cells infected with rec700 (wild-type), dl748 (10.4K-, 14.5K+), or dl764 (10.4K+, 14.5K-) or coinfected with dl748 plus dl764. Further evidence that the 10.4K and 14.5K proteins function in concert was obtained by demonstrating that the 10.4K protein was coimmunoprecipitated with the 14.5K protein by using three different antisera to the 14.5K protein, strongly implying that the 10.4K and 14.5K proteins exist as a complex. Together, these results indicate that the 10.4K and 14.5K proteins function as a complex to stimulate endosome-mediated internalization and degradation of EGF-R in adenovirus-infected cells.


Assuntos
Adenoviridae/metabolismo , Regulação para Baixo , Receptores ErbB/fisiologia , Proteínas Oncogênicas Virais/fisiologia , Infecções por Adenoviridae/metabolismo , Infecções por Adenoviridae/patologia , Proteínas Precoces de Adenovirus , Sequência de Aminoácidos , Células Cultivadas , Imunofluorescência , Humanos , Hidrólise , Dados de Sequência Molecular , Peso Molecular , Região Organizadora do Nucléolo/microbiologia , Fosforilação , Testes de Precipitina
5.
J Virol ; 65(6): 3083-94, 1991 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-1827845

RESUMO

Tumor necrosis factor (TNF) is a multifunctional immunoregulatory protein that is secreted by activated macrophages and is believed to have antiviral activities. We reported earlier that when mouse C3HA fibroblasts are infected with human adenoviruses, the 289R and 243R proteins encoded by region E1A render the cells susceptible to lysis by TNF, and a 14,700-molecular-weight protein (14.7K protein) encoded by region E3 protects the cells against lysis by TNF. We now report that the 19,000-molecular-weight (19K) (176R) protein encoded by the E1B transcription unit can protect human HEL-299 fibroblasts and human ME-180 cervical carcinoma cells against lysis by TNF. This was determined by infecting cells with adenovirus double mutants that lack region E3 and do or do not express the E1B-19K protein and by measuring cytolysis by using a short-term (18-h) 51Cr-release assay. Under these assay conditions, the 51Cr release was specific to TNF and was not a consequence of the cyt phenotype associated with E1B-19K protein-negative mutants. Also, by using virus double mutants that lack E3 in combination with other early regions, we found that E1A, the E1B-55K protein-encoding gene, E3, and E4 are not required to protect HEL-299 cells against TNF cytolysis. Three additional human cancer cell lines (HeLa, HCT8, and RC29) and a simian virus 40-transformed WI38 cell line (VA-13) also required E1B for protection against TNF cytolysis, indicating that the E1B-19K protein is required to protect many if not all human cell types against lysis by TNF when infected by adenovirus. The E1B-19K protein was not able to protect six different adenovirus-infected mouse cell lines against TNF lysis, even though the protein was shown to be efficiently expressed in one of the cell lines. HEL-299 or ME-180 cells infected by a mutant that lacks the E1B-19K protein but retains region E3 were not lysed by TNF, indicating that one or more of the E3 proteins can protect these cells against TNF lysis in the absence of the E1B-19K protein. Thus, the E3-14.7K but not the E1B-19K protein can protect adenovirus-infected mouse cells against TNF cytolysis, whereas the E1B-19K protein as well as one or more of the E3 proteins can protect adenovirus-infected human cells against TNF cytolysis.


Assuntos
Adenoviridae/efeitos dos fármacos , Proteínas Oncogênicas Virais/genética , Fator de Necrose Tumoral alfa/farmacologia , Adenoviridae/genética , Proteínas Precoces de Adenovirus , Animais , Linhagem Celular Transformada , Fibroblastos/microbiologia , Humanos , Camundongos , Peso Molecular , Mutação , Proteínas Oncogênicas Virais/biossíntese , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA