Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 633(8031): 798-803, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39261737

RESUMO

Materials with electromechanical coupling are essential for transducers and acoustic devices as reversible converters between mechanical and electrical energy1-6. High electromechanical responses are typically found in materials with strong structural instabilities, conventionally achieved by two strategies-morphotropic phase boundaries7 and nanoscale structural heterogeneity8. Here we demonstrate a different strategy to accomplish ultrahigh electromechanical response by inducing extreme structural instability from competing antiferroelectric and ferroelectric orders. Guided by the phase diagram and theoretical calculations, we designed the coexistence of antiferroelectric orthorhombic and ferroelectric rhombohedral phases in sodium niobate thin films. These films show effective piezoelectric coefficients above 5,000 pm V-1 because of electric-field-induced antiferroelectric-ferroelectric phase transitions. Our results provide a general approach to design and exploit antiferroelectric materials for electromechanical devices.

2.
Phys Chem Chem Phys ; 25(46): 31874-31883, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37971384

RESUMO

Dialysis is an artificial process to remove excess urea toxins from the body through adsorption or conversion. Urea adsorption by emergent 2D materials such as MXenes is one probable approach. Based on density functional theory (DFT) studies, the surface of Ti3C2Tx (T = -O- and -OH) MXenes is not optimum for urea adsorption. Therefore, functionalization with 3d metal dopants (Cu, Co, and Ni) is proposed to improve their urea adsorption ability. DFT calculations indicate that oxygen-terminated Ti3C2O2 has a much better urea adsorption ability when doped with Cu, Co, and Ni, with adsorption energy (Eads) values of -2.11 eV, -1.90 eV and -1.72 eV, respectively. These adsorption energies are much more favourable than that of the undoped one (Eads = -0.52 eV). To verify the calculation results, MILD Ti3C2Tx, or MXenes synthesized via the safer and easier minimally intensive layer delamination (MILD) method, were utilized to simulate Ti3C2O2 since they have -O- termination as the dominant species. Experimentally, the adsorption studies found that low concentration of Cu, Co, and Ni on MILD Ti3C2Tx showed a urea removal efficiency of 21.9%, 6.0% and 0.2%, respectively, much better than 0% removal efficiency of unfunctionalized Ti3C2Tx. Therefore, both DFT calculations and experiments showed that various metal functionalized MXenes have a similar trend for urea adsorption, highlighting the feasibility of using the computational approach to predict urea adsorption and further opening a new promising direction for the urea adsorption. Finally, this study is also the first to examine synergistic effects of metal dopants and surface terminations on MXenes for urea adsorption.

3.
Angew Chem Int Ed Engl ; 58(15): 4992-4997, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30761712

RESUMO

New protocols for controlled reduction of carboxamides to either alcohols or amines were established using a combination of sodium hydride (NaH) and zinc halides (ZnX2 ). Use of a different halide on ZnX2 dictates the selectivity, wherein the NaH-ZnI2 system delivers alcohols and NaH-ZnCl2 gives amines. Extensive mechanistic studies by experimental and theoretical approaches imply that polymeric zinc hydride (ZnH2 )∞ is responsible for alcohol formation, whereas dimeric zinc chloride hydride (H-Zn-Cl)2 is the key species for the production of amines.

4.
ACS Omega ; 8(17): 14965-14984, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37151531

RESUMO

This study reports on successful synthesis of carbon dots (CDs), nitrogen-doped zinc oxide (N-ZnO), and N-ZnO/CD nanocomposites as photocatalysts for degradation of methylene blue. The first part was the synthesis of CDs utilizing a precursor from soybean and ethylenediamine as a dopant by a hydrothermal method. The second part was the synthesis of N-ZnO with urea as the nitrogen dopant carried out by a calcination method in a furnace at 500 °C for 2 h in an N2 atmosphere (5 °C min-1). The third part was the synthesis of N-ZnO/CD nanocomposites. The characteristics of CDs, N-ZnO, and N-ZnO/CD nanocomposites were analyzed through Fourier transform infrared (FTIR), UV-vis absorbance, photoluminescence (PL), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), thermal gravimetry analysis (TGA), field-emission scanning electron microscopy energy-dispersive spectroscopy (FESEM EDS), X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) analysis. Based on the HR-TEM analysis, the CDs had a spherical shape with an average particle size of 4.249 nm. Meanwhile, based on the XRD and HR-TEM characterization, the N-ZnO and N-ZnO/CD nanocomposites have wurtzite hexagonal structures. The materials of N-ZnO and N-ZnO/CD show increased adsorption in the visible light region and low energy gap E g. The E g values of N-ZnO and N-ZnO/CDs were found to be 2.95 and 2.81 eV, respectively, whereas the surface area (S BET) values 3.827 m2 g-1 (N-ZnO) and 3.757 m2 g-1(N-ZnO/CDs) belonged to the microporous structure. In the last part, the photocatalysts of CDs, N-ZnO, and N-ZnO/CD nanocomposites were used for degradation of MB (10 ppm) under UV-B light irradiation pH = 7.04 (neutral) for 60 min at room temperature. The N-ZnO/CD nanocomposites showed a photodegradation efficiency of 83.4% with a kinetic rate of 0.0299 min-1 higher than N-ZnO and CDs. The XRD analysis and FESEM EDS of the N-ZnO/CDs before and after three cycles confirm the stability of the photocatalyst with an MB degradation of 58.2%. These results have clearly shown that the N-ZnO/CD nanocomposites could be used as an ideal photocatalytic material for the decolorization of organic compounds in wastewater.

5.
ACS Appl Mater Interfaces ; 15(31): 37629-37639, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37463286

RESUMO

Semi-transparent perovskite solar cells (ST-PSCs) have attracted enormous attention recently due to their potential in building-integrated photovoltaic. To obtain adequate average visible transmittance (AVT), a thin perovskite is commonly employed in ST-PSCs. While the thinner perovskite layer has higher transparency, its light absorption efficiency is reduced, and the device shows lower power conversion efficiency (PCE). In this work, a combination of high-quality transparent conducting layers and surface engineering using 2D-MXene results in a superior PCE. In situ high-temperature X-ray diffraction provides direct evidence that the MXene interlayer retards the perovskite crystallization process and leads to larger perovskite grains with fewer grain boundaries, which are favorable for carrier transport. The interfacial carrier recombination is decreased due to fewer defects in the perovskite. Consequently, the current density of the devices with MXene increased significantly. Also, optimized indium tin oxide provides appreciable transparency and conductivity as the top electrode. The semi-transparent device with a PCE of 14.78% and AVT of over 26.7% (400-800 nm) was successfully obtained, outperforming most reported ST-PSCs. The unencapsulated device maintained 85.58% of its original efficiency after over 1000 h under ambient conditions. This work provides a new strategy to prepare high-efficiency ST-PSCs with remarkable AVT and extended stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA