Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 4248, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869060

RESUMO

Identification of somatic mutations in tumor samples is commonly based on statistical methods in combination with heuristic filters. Here we develop VarNet, an end-to-end deep learning approach for identification of somatic variants from aligned tumor and matched normal DNA reads. VarNet is trained using image representations of 4.6 million high-confidence somatic variants annotated in 356 tumor whole genomes. We benchmark VarNet across a range of publicly available datasets, demonstrating performance often exceeding current state-of-the-art methods. Overall, our results demonstrate how a scalable deep learning approach could augment and potentially supplant human engineered features and heuristic filters in somatic variant calling.


Assuntos
Aprendizado Profundo , Neoplasias , Algoritmos , Benchmarking , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA