Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Circulation ; 149(21): 1670-1688, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38314577

RESUMO

BACKGROUND: Preeclampsia is a serious disease of pregnancy that lacks early diagnosis methods or effective treatment, except delivery. Dysregulated uterine immune cells and spiral arteries are implicated in preeclampsia, but the mechanistic link remains unclear. METHODS: Single-cell RNA sequencing and spatial transcriptomics were used to identify immune cell subsets associated with preeclampsia. Cell-based studies and animal models including conditional knockout mice and a new preeclampsia mouse model induced by recombinant mouse galectin-9 were applied to validate the pathogenic role of a CD11chigh subpopulation of decidual macrophages (dMφ) and to determine its underlying regulatory mechanisms in preeclampsia. A retrospective preeclampsia cohort study was performed to determine the value of circulating galectin-9 in predicting preeclampsia. RESULTS: We discovered a distinct CD11chigh dMφ subset that inhibits spiral artery remodeling in preeclampsia. The proinflammatory CD11chigh dMφ exhibits perivascular enrichment in the decidua from patients with preeclampsia. We also showed that trophoblast-derived galectin-9 activates CD11chigh dMφ by means of CD44 binding to suppress spiral artery remodeling. In 3 independent preeclampsia mouse models, placental and plasma galectin-9 levels were elevated. Galectin-9 administration in mice induces preeclampsia-like phenotypes with increased CD11chigh dMφ and defective spiral arteries, whereas galectin-9 blockade or macrophage-specific CD44 deletion prevents such phenotypes. In pregnant women, increased circulating galectin-9 levels in the first trimester and at 16 to 20 gestational weeks can predict subsequent preeclampsia onset. CONCLUSIONS: These findings highlight a key role of a distinct perivascular inflammatory CD11chigh dMφ subpopulation in the pathogenesis of preeclampsia. CD11chigh dMφ activated by increased galectin-9 from trophoblasts suppresses uterine spiral artery remodeling, contributing to preeclampsia. Increased circulating galectin-9 may be a biomarker for preeclampsia prediction and intervention.


Assuntos
Decídua , Galectinas , Macrófagos , Pré-Eclâmpsia , Remodelação Vascular , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/imunologia , Gravidez , Feminino , Animais , Galectinas/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Humanos , Decídua/metabolismo , Decídua/patologia , Camundongos Knockout , Útero/metabolismo , Útero/irrigação sanguínea , Modelos Animais de Doenças , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/genética , Estudos Retrospectivos , Camundongos Endogâmicos C57BL , Antígenos CD11
2.
Mol Cell Proteomics ; 22(4): 100526, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36889440

RESUMO

Successful placentation requires delicate communication between the endometrium and trophoblasts. The invasion and integration of trophoblasts into the endometrium during early pregnancy are crucial to placentation. Dysregulation of these functions is associated with various pregnancy complications, such as miscarriage and preeclampsia. The endometrial microenvironment has an important influence on trophoblast cell functions. The precise effect of the endometrial gland secretome on trophoblast functions remains uncertain. We hypothesized that the hormonal environment regulates the miRNA profile and secretome of the human endometrial gland, which subsequently modulates trophoblast functions during early pregnancy. Human endometrial tissues were obtained from endometrial biopsies with written consent. Endometrial organoids were established in matrix gel under defined culture conditions. They were treated with hormones mimicking the environment of the proliferative phase (Estrogen, E2), secretory phase (E2+Progesterone, P4), and early pregnancy (E2+P4+Human Chorionic Gonadotropin, hCG). miRNA-seq was performed on the treated organoids. Organoid secretions were also collected for mass spectrometric analysis. The viability and invasion/migration of the trophoblasts after treatment with the organoid secretome were determined by cytotoxicity assay and transwell assay, respectively. Endometrial organoids with the ability to respond to sex steroid hormones were successfully developed from human endometrial glands. By establishing the first secretome profiles and miRNA atlas of these endometrial organoids to the hormonal changes followed by trophoblast functional assays, we demonstrated that sex steroid hormones modulate aquaporin (AQP)1/9 and S100A9 secretions through miR-3194 activation in endometrial epithelial cells, which in turn enhanced trophoblast migration and invasion during early pregnancy. By using a human endometrial organoid model, we demonstrated for the first time that the hormonal regulation of the endometrial gland secretome is crucial to regulating the functions of human trophoblasts during early pregnancy. The study provides the basis for understanding the regulation of early placental development in humans.


Assuntos
MicroRNAs , Trofoblastos , Feminino , Humanos , Gravidez , Endométrio/metabolismo , Hormônios Esteroides Gonadais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Organoides/metabolismo , Placenta/metabolismo , Secretoma , Trofoblastos/metabolismo , Aquaporinas/metabolismo
3.
Biol Res ; 57(1): 6, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38347646

RESUMO

BACKGROUND: The monthly regeneration of human endometrial tissue is maintained by the presence of human endometrial mesenchymal stromal/stem cells (eMSC), a cell population co-expressing the perivascular markers CD140b and CD146. Endometrial regeneration is impaired in the presence of intrauterine adhesions, leading to infertility, recurrent pregnancy loss and placental abnormalities. Several types of somatic stem cells have been used to repair the damaged endometrium in animal models, reporting successful pregnancy. However, the ability of endometrial stem cells to repair the damaged endometrium remains unknown. METHODS: Electrocoagulation was applied to the left uterine horn of NOD/SCID mice causing endometrial injury. Human eMSC or PBS was then injected into the left injured horn while the right normal horn served as controls. Mice were sacrificed at different timepoints (Day 3, 7 and 14) and the endometrial morphological changes as well as the degree of endometrial injury and repair were observed by histological staining. Gene expression of various inflammatory markers was assessed using qPCR. The functionality of the repaired endometrium was evaluated by fertility test. RESULTS: Human eMSC successfully incorporated into the injured uterine horn, which displayed significant morphological restoration. Also, endometrium in the eMSC group showed better cell proliferation and glands formation than the PBS group. Although the number of blood vessels were similar between the two groups, gene expression of VEGF-α significantly increased in the eMSC group. Moreover, eMSC had a positive impact on the regeneration of both stromal and epithelial components of the mouse endometrium, indicated by significantly higher vimentin and CK19 protein expression. Reduced endometrial fibrosis and down-regulation of fibrosis markers were also observed in the eMSC group. The eMSC group had a significantly higher gene expression of anti-inflammatory factor Il-10 and lower mRNA level of pro-inflammatory factors Ifng and Il-2, indicating the role of eMSC in regulation of inflammatory reactions. The eMSC group showed higher implantation sites than the PBS group, suggesting better endometrial receptivity with the presence of newly emerged endometrial lining. CONCLUSIONS: Our findings suggest eMSC improves regeneration of injured endometrium in mice.


Assuntos
Células-Tronco Mesenquimais , Doenças Uterinas , Camundongos , Feminino , Humanos , Gravidez , Animais , Camundongos Endogâmicos NOD , Camundongos SCID , Placenta/patologia , Endométrio/metabolismo , Endométrio/patologia , Doenças Uterinas/terapia , Doenças Uterinas/metabolismo , Doenças Uterinas/patologia , Fibrose
4.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33602822

RESUMO

Meiosis is a specialized cell division that creates haploid germ cells from diploid progenitors. Through differential RNA expression analyses, we previously identified a number of mouse genes that were dramatically elevated in spermatocytes, relative to their very low expression in spermatogonia and somatic organs. Here, we investigated in detail 1700102P08Rik, one of these genes, and independently conclude that it encodes a male germline-specific protein, in agreement with a recent report. We demonstrated that it is essential for pachynema progression in spermatocytes and named it male pachynema-specific (MAPS) protein. Mice lacking Maps (Maps-/- ) suffered from pachytene arrest and spermatocyte death, leading to male infertility, whereas female fertility was not affected. Interestingly, pubertal Maps-/- spermatocytes were arrested at early pachytene stage, accompanied by defects in DNA double-strand break (DSB) repair, crossover formation, and XY body formation. In contrast, adult Maps-/- spermatocytes only exhibited partially defective crossover but nonetheless were delayed or failed in progression from early to mid- and late pachytene stage, resulting in cell death. Furthermore, we report a significant transcriptional dysregulation in autosomes and XY chromosomes in both pubertal and adult Maps-/- pachytene spermatocytes, including failed meiotic sex chromosome inactivation (MSCI). Further experiments revealed that MAPS overexpression in vitro dramatically decreased the ubiquitination levels of cellular proteins. Conversely, in Maps-/- pachytene cells, protein ubiquitination was dramatically increased, likely contributing to the large-scale disruption in gene expression in pachytene cells. Thus, MAPS is a protein essential for pachynema progression in male mice, possibly in mammals in general.


Assuntos
Infertilidade Masculina/patologia , Meiose , Proteínas Nucleares/fisiologia , Estágio Paquíteno , Espermatócitos/patologia , Espermatogênese , Animais , Pareamento Cromossômico , Reparo do DNA , Feminino , Infertilidade Masculina/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Cromossomos Sexuais , Espermatócitos/metabolismo
5.
J Assist Reprod Genet ; 41(2): 465-472, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183536

RESUMO

PURPOSE: This study aimed to optimize the non-invasive preimplantation genetic testing for aneuploidy (niPGT-A) in the laboratory by comparing two collection timing of the spent culture medium (SCM), two embryo rinsing protocols, and the use of conventional insemination instead of intracytoplasmic sperm injection (ICSI). METHODS: Results of two embryo rinsing methods (one-step vs sequential) and SCM collected on day 5 vs day 6 after retrieval were compared against trophectoderm (TE) biopsies as reference. Results from day 6 SCM in cycles fertilized by conventional insemination were compared with PGT-A using ICSI. RESULTS: The rate of concordance was higher in day 6 samples than in day 5 samples when the sequential method was used, in terms of total concordance (TC; day 6 vs day 5: 85.0% vs 60.0%, p = 0.0228), total concordance with same sex (TCS, 82.5% vs 28,0%, p < 0.0001), and full concordance with same sex (FCS, 62.5% vs 24.0%, p = 0.0025). The sequential method significantly out-performed the one-step method when SCM were collected on day 6 (sequential vs one-step, TC: 85.0% vs 64.5%, p = 0.0449; TCS: 82.5% vs 54.8%, p = 0.0113; FCS: 62.5% vs 25.8%, p = 0.0021). There was no significant difference in niPGT-A results between cycles fertilized by the conventional insemination and ICSI. CONCLUSION: We have shown a higher concordance rate when SCM was collected on day 6 and the embryos were rinsed in a sequential manner. Comparable results of niPGT-A when oocytes were fertilized by conventional insemination or ICSI. These optimization steps are important prior to commencement of a randomized trial in niPGT-A.


Assuntos
Fertilização in vitro , Diagnóstico Pré-Implantação , Gravidez , Feminino , Masculino , Humanos , Diagnóstico Pré-Implantação/métodos , Sêmen , Testes Genéticos/métodos , Injeções de Esperma Intracitoplásmicas/métodos , Aneuploidia , Blastocisto/patologia
6.
BMC Genomics ; 24(1): 618, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853336

RESUMO

BACKGROUND: Extravillous trophoblast cell (EVT) differentiation and its communication with maternal decidua especially the leading immune cell type natural killer (NK) cell are critical events for placentation. However, appropriate in vitro modelling system and regulatory programs of these two events are still lacking. Recent trophoblast organoid (TO) has advanced the molecular and mechanistic research in placentation. Here, we firstly generated the self-renewing TO from human placental villous and differentiated it into EVTs (EVT-TO) for investigating the differentiation events. We then co-cultured EVT-TO with freshly isolated decidual NKs for further study of cell communication. TO modelling of EVT differentiation as well as EVT interaction with dNK might cast new aspect for placentation research. RESULTS: Single-cell RNA sequencing (scRNA-seq) was applied for comprehensive characterization and molecular exploration of TOs modelling of EVT differentiation and interaction with dNKs. Multiple distinct trophoblast states and dNK subpopulations were identified, representing CTB, STB, EVT, dNK1/2/3 and dNKp. Lineage trajectory and Seurat mapping analysis identified the close resemblance of TO and EVT-TO with the human placenta characteristic. Transcription factors regulatory network analysis revealed the cell-type specific essential TFs for controlling EVT differentiation. CellphoneDB analysis predicted the ligand-receptor complexes in dNK-EVT-TO co-cultures, which relate to cytokines, immunomodulation and angiogenesis. EVT was known to affect the immune properties of dNK. Our study found out that on the other way around, dNKs could exert effects on EVT causing expression changes which are functionally important. CONCLUSION: Our study documented a single-cell atlas for TO and its applications on EVT differentiation and communications with dNKs, and thus provide methodology and novel research cues for future study of human placentation.


Assuntos
Placenta , Trofoblastos , Gravidez , Feminino , Humanos , Trofoblastos/metabolismo , Decídua/metabolismo , Diferenciação Celular , Organoides , Células Matadoras Naturais/metabolismo , Movimento Celular
7.
Arch Gynecol Obstet ; 308(2): 599-610, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37246978

RESUMO

PURPOSE: This retrospective cohort study aimed to investigate the value of preimplantation genetic testing for aneuploidy (PGT-A) as a screening test for patients suffering from unexplained recurrent implantation failure (RIF). METHODS: After screening patients in one reproductive medicine center, twenty-nine, forty-nine and thirty-eight women (< 40 years old) who had suffered unexplained RIF with PGT-A, or RIF without PGT-A, or no RIF with PGT-A were included. The clinical pregnancy rate and live birth rate per transfer, the conservative and optimal cumulative clinical pregnancy rates (CCPR) and live birth rates (CLBR) after three blastocyst FETs were analyzed. RESULTS: The live birth rate per transfer was significantly higher in the RIF + PGT-A group than that in the RIF + NO PGT-A group (47.6% vs. 24.6%, p = 0.014). After 3 cycles of FET, RIF + PGT-A group had significantly higher conservative CLBR and optimal CLBR compared to the RIF + NO PGT-A group (69.0% vs. 32.7%, p = 0.002 and 73.7% vs. 57.5%, p = 0.016), but had similar conservative and optimal CLBRs compared to the NO RIF + PGT-A group. The number of FET cycles required when half women achieved a live birth was 1 in the PGT-A group and 3 in RIF + NO PGT-A group. The miscarriage rates were not different between the RIF + PGT-A and RIF + NO PGT-A, RIF + PGT-A and NO RIF + PGT-A groups. CONCLUSION: PGT-A did be superior in reducing the number of transfer cycles required to achieve a similar live birth rate. Further studies to identify the RIF patients who would benefit most from PGT-A are necessary.


Assuntos
Nascido Vivo , Diagnóstico Pré-Implantação , Gravidez , Humanos , Feminino , Adulto , Estudos Retrospectivos , Testes Genéticos , Taxa de Gravidez , Blastocisto , Aneuploidia , Fertilização in vitro
8.
J Cell Sci ; 133(14)2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513821

RESUMO

Decidual macrophages constitute 20-30% of the total leukocytes in the uterus of pregnant women, regulating the maternal immune tolerance and placenta development. Abnormal number or activities of decidual macrophages (dMs) are associated with fetal loss and pregnancy complications, such as preeclampsia. Monocytes differentiate into dMs in a decidua-specific microenvironment. Despite their important roles in pregnancy, the exact factors that regulate the differentiation into dMs remain unclear. Glycodelin-A (PAEP, hereafter referred to as GdA) is a glycoprotein that is abundantly present in the decidua, and plays an important role in fetomaternal defense and placental development. It modulates the differentiation and activity of several immune cell types residing in the decidua. In this study, we demonstrated that GdA induces the differentiation of human monocytes into dM-like phenotypes in terms of transcriptome, cell surface marker expression, secretome, and regulation of trophoblast and endothelial cell functions. We found that Sialic acid-binding Ig-like lectin 7 (Siglec-7) mediates the binding and biological actions of GdA in a sialic acid-dependent manner. We, therefore, suggest that GdA, induces the polarization of monocytes into dMs to regulate fetomaternal tolerance and placental development.


Assuntos
Monócitos , Placenta , Antígenos de Diferenciação Mielomonocítica , Feminino , Glicodelina , Humanos , Lectinas , Macrófagos , Fenótipo , Gravidez , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico
9.
Reprod Biol Endocrinol ; 20(1): 120, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35964080

RESUMO

During implantation, a symphony of interaction between the trophoblast originated from the trophectoderm of the implanting blastocyst and the endometrium leads to a successful pregnancy. Defective interaction between the trophoblast and endometrium often results in implantation failure, pregnancy loss, and a number of pregnancy complications. Owing to ethical concerns of using in vivo approaches to study human embryo implantation, various in vitro culture models of endometrium were established in the past decade ranging from two-dimensional cell-based to three-dimensional extracellular matrix (ECM)/tissue-based culture systems. Advanced organoid systems have also been established for recapitulation of different cellular components of the maternal-fetal interface, including the endometrial glandular organoids, trophoblast organoids and blastoids. However, there is no single ideal model to study the whole implantation process leaving more research to be done pursuing the establishment of a comprehensive in vitro model that can recapitulate the biology of trophoblast-endometrium interaction during early pregnancy. This would allow us to have better understanding of the physiological and pathological process of trophoblast-endometrium interaction during implantation.


Assuntos
Implantação do Embrião , Trofoblastos , Blastocisto , Implantação do Embrião/fisiologia , Embrião de Mamíferos , Endométrio , Feminino , Humanos , Gravidez , Trofoblastos/fisiologia
10.
J Nanobiotechnology ; 20(1): 86, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35180876

RESUMO

BACKGROUND: The maternal immune system needs to tolerate the semi-allogeneic fetus in pregnancy. The adaptation occurs locally at the maternal-fetal interface as well as systemically through the maternal circulation. Failure to tolerate the paternal antigens may result in pregnancy complications, such as pregnancy loss and pre-eclampsia. However, the mechanism that regulates maternal immune tolerance, especially at the systemic level, is still an enigma. Here we report that the first-trimester placenta-derived exosomes (pEXOs) contribute to maternal immune tolerance by reprogramming the circulating monocytes. RESULTS: pEXOs predominantly target monocytes and pEXO-educated monocytes exhibit an immunosuppressive phenotype as demonstrated by reduced expression of marker genes for monocyte activation, T-cell activation and antigen-process/presentation at the transcriptomic level. They also have a greater propensity towards M2 polarization when compared to the monocytes without pEXO treatment. The inclusion of pEXOs in a monocyte-T-cell coculture model significantly reduces proliferation of the T helper cells and cytotoxic T cells and elevates the expansion of regulatory T cells. By integrating the microRNAome of pEXO and the transcriptomes of pEXO-educated monocytes as well as various immune cell functional assays, we demonstrate that the pEXO-derived microRNA miR-29a-3p promotes the expression of programmed cell death ligand-1, a well-known surface receptor that suppresses the adaptive immune system, by down-regulation of phosphatase and tensin homolog in monocytes. CONCLUSIONS: This is the first report to show how human pEXO directly regulates monocyte functions and its molecular mechanism during early pregnancy. The results uncover the importance of pEXO in regulating the maternal systemic immune response during early pregnancy by reprogramming circulating monocytes. The study provides the basis for understanding the regulation of maternal immune tolerance to the fetal allograft.


Assuntos
Exossomos , Monócitos , Técnicas de Cocultura , Feminino , Humanos , Tolerância Imunológica , Placenta/metabolismo , Gravidez
11.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36613656

RESUMO

The decidualization of endometrial stromal cells (ESCs) is an essential process facilitating embryo implantation. However, the roles of non-decidualized and decidualized ESCs in regulating the microenvironment of a receptive endometrium remain unclear. We investigated single-cell transcriptomic changes in the uterus of a CD-1 mouse model at the post-implantation stage. The implantation and inter-implantation sites of the uteruses of pregnant mice at 4.5 and 5.5 days post-coitum were dissected for single-cell RNA sequencing. We identified eight cell types: epithelial cells, stromal cells, endothelial cells, mesothelial cells, lymphocytes, myocytes, myeloids, and pericytes. The ESC transcriptome suggests that the four ESC subtypes are involved in the extracellular remodeling during implantation. The trajectory plot of ESC subtypes indicates embryo implantation that involves a differentiation pathway from undifferentiated ESCs (ESC 1) to decidualized ESCs (DEC ESCs), with distinct signaling pathways between the ESC subtypes. Furthermore, the ligand-receptor analysis suggests that ESCs communicate with epithelial cells and immune cells through nectin and ICAM signaling. Collectively, both decidualized and non-decidualized ESCs may regulate the endometrial microenvironment for optimal endometrial receptivity and immune tolerance. This study provides insights on the molecular and cellular characteristics of mouse ESCs in modulating the epithelial and lymphocyte functions during early embryo implantation.


Assuntos
Implantação do Embrião , Células Endoteliais , Gravidez , Feminino , Animais , Camundongos , Implantação do Embrião/genética , Endométrio/metabolismo , Linfócitos , Células Estromais/metabolismo , RNA/metabolismo , Células Epiteliais
12.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35563003

RESUMO

Human endometrium is an incredibly dynamic tissue undergoing cyclic regeneration and shedding during a woman's reproductive life. Endometrial mesenchymal stromal/stem-like cells (eMSC) contribute to this process. A hypoxic niche with low oxygen levels has been reported in multiple somatic stem cell types. However, the knowledge of hypoxia on eMSC remains limited. In mice, stromal stem/progenitor cells can be identified by the label-retaining technique. We examined the relationship between the label-retaining stromal cells (LRSC) and hypoxia during tissue breakdown in a mouse model of simulated menses. Our results demonstrated that LRSC resided in a hypoxic microenvironment during endometrial breakdown and early repair. Immunofluorescence staining revealed that the hypoxic-located LRSC underwent proliferation and was highly colocalized with Notch1. In vitro studies illustrated that hypoxia activated Notch signaling in eMSC, leading to enhanced self-renewal, clonogenicity and proliferation of cells. More importantly, HIF-1α played an essential role in the hypoxia-mediated maintenance of eMSC through the activation of Notch signaling. In conclusion, our findings show that some endometrial stem/progenitor cells reside in a hypoxic niche during menstruation, and hypoxia can regulate the self-renewal activity of eMSC via Notch signaling.


Assuntos
Hipóxia Celular , Endométrio , Células-Tronco Mesenquimais , Animais , Hipóxia Celular/fisiologia , Endométrio/metabolismo , Feminino , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Receptores Notch/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo
13.
J Obstet Gynaecol ; 42(4): 648-653, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34382499

RESUMO

Intracytoplasmic sperm injection (ICSI) is commonly used to treat severe male factor infertility in assisted reproduction. A small percentage of patients face suboptimal fertilisation rate or even fertilisation failure despite having ICSI. Artificial oocyte activation (AOA) has been proposed as a suitable method to overcome their problem. This is a retrospective cohort analysis of ICSI cycles undergoing AOA. Injected metaphase II oocytes were exposed to either calcium ionophore (A23187) after ICSI or injection of calcium chloride during ICSI followed by incubation with A23187 after ICSI. The previous ICSI cycles of the patients formed the historical control group. Thirty-four AOA cycles were analysed. The normal fertilisation rate (52.1%) was significantly improved in the AOA group. The percentage of failed fertilisation cycles (11.8%) were significantly reduced in the AOA group. The cumulative clinical pregnancy rate (47.1%) and live birth rate (29.4%) were significantly increased when compared to the previous cycles. Subgroup analysis revealed that the performance of the A23187 only protocol and the concomitant injection of calcium chloride protocol were comparable in terms of laboratory parameters and pregnancy outcomes. AOA is an effective method to improve the fertilisation rate and pregnancy outcome of infertile couples with previous fertilisation problem after ICSI.IMPACT STATEMENTWhat is already known on this subject? A failed and low fertilisation rate after ICSI is not uncommon in assisted reproduction. AOA is normally used to improve fertilisation but there are discrepancies in the efficacy of the treatment.What do the results of this study add? AOA improves the fertilisation rate and pregnancy outcomes of couples with suboptimal fertilisation rate and fertilisation failure in previous ICSI cycles. The efficacies of two AOA protocols were comparable. The A23187 only protocol was recommended because of its simplicity.What are the implications of these findings for clinical practice and/or further research? AOA should be considered as a routine procedure for infertile couples with compromised fertilisation rates in previous ICSI cycles.


Assuntos
Infertilidade Masculina , Injeções de Esperma Intracitoplásmicas , Calcimicina/uso terapêutico , Cloreto de Cálcio , Feminino , Fertilização in vitro/métodos , Humanos , Infertilidade Masculina/terapia , Masculino , Oócitos/fisiologia , Gravidez , Taxa de Gravidez , Estudos Retrospectivos , Injeções de Esperma Intracitoplásmicas/métodos
14.
Exp Cell Res ; 388(1): 111718, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31874176

RESUMO

Successful implantation happens only when the development of a competent blastocyst synchronized with the differentiation of a receptive uterus. The exact mechanism affecting embryo implantation competency is still unclear. Previous data from our laboratory showed that several members of the let-7 family were up-regulated in the implanting dormant blastocysts and prohibited embryo activation through down-regulation integrin-ß3. However, how the mir-let-7 family is regulated is still a question. In this study, the in vitro co-culture model was applied to imitate implantation. Human embryo surrogate Jeg-3 spheroids and endometrium epithelial cells Ishikawa were used. The following views were demonstrated. Firstly,Wnt/ß-catenin signaling is essential for Jeg-3 spheroids implantation. Secondly, mir-let-7a is repressed by Wnt signaling, and low let-7a is beneficial for spheroids attachment and outgrowth. Third, in contrast with let-7a, lin28a is up-regulated by Wnt and promotes attachment and outgrowth. Lastly, the function of Wnt in embryo surrogate spheroids in implantation is mediated through lin28a/let-7a axis. In summary, our findings suggest Wnt/ß-catenin signaling strength human embryo surrogate spheroids implanting potential through regulation lin28a/let-7a axis.


Assuntos
Endométrio/citologia , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/genética , Esferoides Celulares/metabolismo , Trofoblastos/citologia , Via de Sinalização Wnt , Linhagem Celular Tumoral , Técnicas de Cocultura , Implantação do Embrião/genética , Endométrio/metabolismo , Células Epiteliais/metabolismo , Feminino , Humanos , MicroRNAs/genética , Proteínas de Ligação a RNA/metabolismo , Esferoides Celulares/citologia , Trofoblastos/metabolismo
15.
Ecotoxicol Environ Saf ; 208: 111606, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396126

RESUMO

Mancozeb is a metal-containing ethylene bis-dithiocarbamate fungicide widely used in agriculture. Ethylene thiourea (ETU) is the primary metabolite of Mancozeb. Mancozeb has been associated with spontaneous abortions and abnormal menstruation in women. However, the effects of Mancozeb and ETU on embryo attachment remain unknown. The human blastocyst surrogate trophoblastic spheroids (JEG-3), endometrial epithelial surrogate adenocarcinoma cells (Ishikawa), or human primary endometrial epithelial cells (EECs) monolayer were used in the spheroid attachment models. Ishikawa and EECs were pretreated with different concentrations of Mancozeb or ETU for 48 h before the attachment assay. Gene expression profiles of Ishikawa cells were examined to understand how Mancozeb modulates endometrial receptivity with Microarray. The genes altered by Mancozeb were confirmed by qPCR and compared with the ETU treated groups. Mancozeb and ETU treatment inhibited cell viability at 10 µg/mL and 5000 µg/mL, respectively. At non-cytotoxic concentrations, Mancozeb at 3 µg/mL and ETU at 300 µg/mL reduced JEG-3 spheroid attachment onto Ishikawa cells. A similar result was observed with human primary endometrial epithelial cells. Mancozeb at 3 µg/mL modified the transcription of 158 genes by at least 1.5-fold in Microarray analysis. The expression of 10 differentially expressed genes were confirmed by qPCR. Furthermore, Mancozeb decreased spheroid attachment possibly through downregulating the expression of endometrial estrogen receptor ß and integrin ß3, but not mucin 1. These results were confirmed in both overexpression and knockdown experiments and co-culture assay. Mancozeb but not its metabolite ETU reduced spheroid attachment through modulating gene expression profile and decreasing estrogen receptor ß and integrin ß3 expression of endometrial epithelial cells.


Assuntos
Adesão Celular/efeitos dos fármacos , Endométrio/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Receptor beta de Estrogênio/metabolismo , Fungicidas Industriais/toxicidade , Integrina beta3/metabolismo , Maneb/toxicidade , Esferoides Celulares/efeitos dos fármacos , Zineb/toxicidade , Blastocisto/citologia , Blastocisto/efeitos dos fármacos , Blastocisto/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Regulação para Baixo , Endométrio/citologia , Endométrio/metabolismo , Células Epiteliais/metabolismo , Receptor beta de Estrogênio/genética , Feminino , Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Integrina beta3/genética , Gravidez , Esferoides Celulares/metabolismo
16.
Genomics ; 112(1): 494-500, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30946890

RESUMO

Balanced reciprocal translocation carriers are usually phenotypically normal but are at an increased risk of infertility, recurrent miscarriage or having affected children. Preimplantation genetic testing on chromosomal structural rearrangement (PGT-SR) offers a way to screen against unbalanced embryos. Here, we demonstrated a new method to distinguish carrier from noncarrier embryos. Translocation breakpoints were first delineated by nanopore sequencing followed by polymerase chain reaction (PCR) across breakpoints. High-resolution breakpoint mapping was successful in all (9/9) balanced reciprocal translocation carriers. Retrospective analysis of their embryo biopsies with breakpoint PCR showed 100% concordant results with PGT-SR on trophectoderm biopsies (40/40) and 53% concordance on blastomere biopsies (8/15). The low concordant rate in blastomeres was due to failure in the amplification of derivative chromosomes involving large deletions. Breakpoint PCR also showed 100% concordant results with prenatal/postnatal outcomes on 5 pregnancies, indicating that our new method can accurately distinguish carrier from noncarrier embryos.


Assuntos
Fertilização in vitro , Heterozigoto , Sequenciamento por Nanoporos , Diagnóstico Pré-Implantação , Translocação Genética , Pontos de Quebra do Cromossomo , Feminino , Humanos , Reação em Cadeia da Polimerase , Gravidez , Estudos Retrospectivos
17.
Carcinogenesis ; 41(11): 1592-1604, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32415843

RESUMO

Cancer stem cells (CSCs) play significant roles in tumor initiation. MicroRNA-135a (miR-135a) induced the formation of a CD133+ subpopulation from a human papillomavirus-immortalized cervical epithelial cell line. Compared with the CD133- cells, the CD133+ cells expressed higher levels of miR-135a and OCT4, exhibited significantly higher tumorsphere forming capacity and the time required for tumorsphere formation was shortened in the second generation. Serum induction suppressed the expression of CD133, OCT4 and miR-135a, but increased expression of involucrin in the miR-135a-induced CD133+ cells. The miR-135a-induced CD133+ cells were tumorigenic in a limiting dilution approach in vivo. The cells expressed significantly higher level of active ß-catenin and OCT4 than the CD133- counterpart. Wnt3a enhanced the expression of OCT4 and CD133 in cervical cancer cells but failed to enhance CD133 transcription in normal cervical cells. Wnt3a stimulation also increased tumorsphere size and self-renewal of miR-135a-induced CD133+ subpopulation. Wnt/ß-catenin inhibition suppressed tumorsphere formation while Wnt3a partially nullified the inhibitory effect. Taken together, miR-135a induced the formation of a subpopulation of cells with CSC properties both in vitro and in vivo and the Wnt/ß-catenin signaling pathway is essential to maintain its tumorigenicity.


Assuntos
Antígeno AC133/metabolismo , Biomarcadores Tumorais/genética , MicroRNAs/genética , Células-Tronco Neoplásicas/patologia , Neoplasias do Colo do Útero/patologia , Antígeno AC133/genética , Animais , Apoptose , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Lab Invest ; 100(7): 1014-1025, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32205858

RESUMO

Glycodelin is a major glycoprotein expressed in reproductive tissues, like secretory and decidualized endometrium. It has several reproduction related functions that are dependent on specific glycosylation, but it has also been found to drive differentiation of endometrial carcinoma cells toward a less malignant phenotype. Here we aimed to elucidate whether the glycosylation and function of glycodelin is altered in endometrial carcinoma as compared with a normal endometrium. We carried out glycan structure analysis of glycodelin expressed in HEC-1B human endometrial carcinoma cells (HEC-1B Gd) by mass spectrometry glycomics strategies. Glycans of HEC-1B Gd were found to comprise a typical mixture of high-mannose, hybrid, and complex-type N-glycans, often containing undecorated LacNAc (Galß1-4GlcNAc) antennae. However, several differences, as compared with previously reported glycan structures of normal human decidualized endometrium-derived glycodelin isoform, glycodelin-A (GdA), were also found. These included a lower level of sialylation and more abundant poly-LacNAc antennae, some of which are fucosylated. This allowed us to select lectins that showed different binding to these classes of glycodelin. Despite the differences in glycosylation between HEC-1B Gd and GdA, both showed similar inhibitory activity on trophoblast cell invasion and peripheral blood mononuclear cell proliferation. For the detection of cancer associated glycodelin, we established a novel in situ proximity-ligation based histochemical staining method using a specific glycodelin antibody and UEAI lectin. We found that the UEAI reactive glycodelin was abundant in endometrial carcinoma, but virtually absent in normal endometrial tissue even when glycodelin was strongly expressed. In conclusion, we established a histochemical staining method for the detection of endometrial carcinoma-associated glycodelin and showed that this specific glycodelin is exclusively expressed in cancer, not in normal endometrium. Similar methods can be used for studies of other glycoproteins.


Assuntos
Neoplasias do Endométrio , Glicodelina , Neoplasias Uterinas , Sequência de Carboidratos , Linhagem Celular Tumoral , Neoplasias do Endométrio/química , Neoplasias do Endométrio/metabolismo , Feminino , Glicodelina/análise , Glicodelina/química , Glicodelina/metabolismo , Glicômica , Glicosilação , Humanos , Lectinas/metabolismo , Espectrometria de Massas , Placenta/química , Gravidez , Neoplasias Uterinas/química , Neoplasias Uterinas/metabolismo
19.
Biol Reprod ; 102(3): 693-704, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31742322

RESUMO

Bisphenol A (BPA) is commonly found in epoxy resins used in the manufacture of plastic coatings in food packaging and beverage cans. There is a growing concern about BPA as a weak estrogenic compound that can affect human endocrine function. Chemicals structurally similar to BPA, such as bisphenol F (BPF) and bisphenol S (BPS), have been developed as substitutes in the manufacturing industry. Whether these bisphenol substitutes have adverse effects on human endocrine and reproductive systems remains largely unknown. This study investigated the effects of BPA, BPF, and BPS on regulating the function of decidualized human primary endometrial stromal cells on trophoblast outgrowth and invasion by indirect and direct co-culture models. All three bisphenols did not affect the stromal cell decidualization process. However, BPA- and BPF-treated decidualized stromal cells stimulated trophoblastic spheroid invasion in the indirect coculture model. The BPA-treated decidualized stromal cells had upregulated expressions of several invasion-related molecules including leukemia inhibitory factor (LIF), whereas both BPA- and BPF-treated decidualized stromal cells had downregulated expressions of anti-invasion molecules including plasminogen activator inhibitor type 1 (PAI-1) and tumor necrosis factor (TNFα) . Taken together, BPA and BPF altered the expression of invasive and anti-invasive molecules in decidualized stromal cells modulating its function on trophoblast outgrowth and invasion, which could affect the implantation process and subsequent pregnancy outcome.


Assuntos
Compostos Benzidrílicos/farmacologia , Disruptores Endócrinos/farmacologia , Endométrio/efeitos dos fármacos , Estrogênios não Esteroides/farmacologia , Fenóis/farmacologia , Células Estromais/efeitos dos fármacos , Trofoblastos/efeitos dos fármacos , Linhagem Celular Tumoral , Endométrio/metabolismo , Feminino , Humanos , Fator Inibidor de Leucemia/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Células Estromais/metabolismo , Trofoblastos/metabolismo
20.
Stem Cells ; 37(11): 1455-1466, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31414525

RESUMO

Human endometrium undergoes cycles of proliferation and differentiation throughout the reproductive years of women. The endometrial stem/progenitor cells contribute to this regenerative process. They lie in the basalis layer of the endometrium next to the myometrium. We hypothesized that human myometrial cells provide niche signals regulating the activities of endometrial mesenchymal stem-like cells (eMSCs). In vitro coculture of myometrial cells enhanced the colony-forming and self-renewal ability of eMSCs. The cocultured eMSCs retained their multipotent characteristic and exhibited a greater total cell output when compared with medium alone culture. The expression of active ß-catenin in eMSCs increased significantly after coculture with myometrial cells, suggesting activation of WNT/ß-catenin signaling. Secretory factors in spent medium from myometrial cell culture produced the same stimulatory effects on eMSCs. The involvement of WNT/ß-catenin signaling in self-renewal of eMSCs was confirmed with the use of WNT activator (Wnt3A conditioned medium) and WNT inhibitors (XAV939 and inhibitor of Wnt Production-2 [IWP-2]). The myometrial cells expressed more WNT5A than other WNT ligands. Recombinant WNT5A stimulated whereas anti-WNT5A antibody suppressed the colony formation, self-renewal, and T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) transcriptional activities of eMSCs. Moreover, eMSCs expressed FZD4 and LRP5. WNT5A is known to activate the canonical WNT signaling in the presence of these receptor components. WNT antagonist, DKK1, binds to LRP5/6. Consistently, DKK1 treatment nullified the stimulatory effect of myometrial cell coculture. In conclusion, our findings show that the myometrial cells are niche components of eMSCs, modulating the self-renewal activity of eMSCs by WNT5A-dependent activation of WNT/ß-catenin signaling. Stem Cells 2019;37:1455-1466.


Assuntos
Cateninas/metabolismo , Endométrio/metabolismo , Células-Tronco Mesenquimais/metabolismo , Miométrio/metabolismo , Proteínas Wnt/metabolismo , Proteína Wnt-5a/metabolismo , Adulto , Cateninas/genética , Células Cultivadas , Endométrio/citologia , Endométrio/efeitos dos fármacos , Feminino , Citometria de Fluxo , Imunofluorescência , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Inativação Gênica/fisiologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/genética , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Pessoa de Meia-Idade , Miométrio/citologia , Miométrio/efeitos dos fármacos , Proteínas Wnt/genética , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética , Proteína Wnt-5a/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA