Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 951: 175610, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39163936

RESUMO

This study investigated the effects of combining Phragmites australis-based biochar, prepared at 400 °C, with various types of phosphate fertilizers-soluble, insoluble, and organic-on the content and transformation of phosphorus fractions in saline-alkali soil. Additionally, we explored microbiological mechanisms driving these transformations. The results showed that this combination significantly increased the concentrations of dicalcium phosphate (Ca2P), octacalcium phosphate (Ca8P), aluminum phosphate (AlP), moderately labile organic phosphorus (MLOP), and resistant organic phosphorus (MROP) in soil. Conversely, the levels of hydroxyapatite (Ca10P) and highly resistant organic phosphorus (HROP) decreased. The increase in labile organic phosphorus (LOP) content or decrease in iron phosphate (FeP) was found to effectively enhance the availability of Olsen phosphorus (Olsen-P) in soil. Furthermore, the study revealed that biochar mixed with organic phosphate fertilizers increased the activity of soil acid phosphatase (ACP) and neutral phosphatase (NEP), while reducing alkaline phosphatase (ALP) activity. In contrast, biochar combined with soluble and insoluble phosphate fertilizers decreased the activity of ACP (22.59 % and 28.57 %, respectively) and NEP (62.50 % and 11.11 %, respectively), with the combination with insoluble fertilizers also reducing ALP activity by 55.84 %, whereas the soluble combination increased it by 190.34 %. Additionally, the co-application of biochar and phosphate fertilizers altered the composition and abundance of the gene phoD-harboring microbial community, enhancing the abundance of Proteobacteria and reducing that of Actinobacteria. Correlation analysis between phoD-functional microbial species and various phosphorus fractions showed that Rhodopseudomonas was significantly associated with several phosphorus components, exhibiting a positive correlation with Ca2P, Ca8P, AlP, LOP, MLOP, and MROP, but a negative relationship with Ca10P. These findings suggest that the combined application of biochar and phosphate fertilizers could change the abundance of Rhodopseudomonas, potentially influencing phosphorus cycling in the soil. This research provides a strong scientific foundation for the efficient combined use of biochar and phosphate fertilizers in managing saline-alkali soil.


Assuntos
Carvão Vegetal , Fertilizantes , Fosfatos , Fósforo , Microbiologia do Solo , Solo , Fertilizantes/análise , Carvão Vegetal/química , Fósforo/análise , Solo/química , Poluentes do Solo/análise , Álcalis
2.
Sci Total Environ ; 860: 160478, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36574551

RESUMO

The contradiction between population growth and soil degradation has been increasingly prominent, such that novel fertilizers (e.g., biochar and microbial fertilizers) should be urgently developed. Biochar is a promising fertilizer carrier for microbial fertilizers due to its porous structure. However, the preparation and mechanisms of the effects of biochar-based microbial fertilizers have been rarely investigated. In this study, biochar, Bacillus, and exogenous N-P-K fertilizers served as the raw materials to prepare biochar-based microbial fertilizers (BCMFs) by optimizing the preparation methods and the process parameters. Moreover, the release patterns of N-P-K were analyzed. A pot experiment was performed on pakchoi to examine the effect of the BCMFs and explore its synergistic effect on soil fertility. The results of this study indicated that adsorption by biochar maintained bacterial activity, whereas the granulation process reduced bacterial activity. The adsorption-granulation process increased the content of total nitrogen and organic matter in the soil while enhancing the slow-release effect of the BCMFs. The Elovich model was capable of describing the nitrogen release of the BCMFs, including the diffusion and chemical processes. As indicated by the result of the column leaching experiment, the BCMFs stopped nutrient leaching more significantly than the conventional fertilizers (CF), especially in stopping N and P leaching. The use of the BCMFs improved the available soil nutrients and soil quality while enhancing the abundance of bacteria correlated with carbon and nitrogen metabolism in the soil. Moreover, a 20 % reduction in the use of the BCMFs did not significantly affect the soil available N and P and the growth status of pakchoi. The result of redundancy analysis indicated that the cation exchange capacity (CEC), NH4+-N, NO3--N, ß-glucosidase (BG), urease (URE), and alkaline phosphatase (AlkP) were the six critical environmental factors for the microbial community structure and could explain 94.8 % of the variance. The BCMFs up-regulated the levels of the above six factors, especially CEC and BG, thus improving the soil quality and enhancing the soil fertility.


Assuntos
Fertilizantes , Solo , Solo/química , Fertilizantes/análise , Carvão Vegetal/química , Nitrogênio/análise , Bactérias , Nutrientes/análise , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA