Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 444
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 161(6): 1437-52, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26046443

RESUMO

Germ cells are vital for transmitting genetic information from one generation to the next and for maintaining the continuation of species. Here, we analyze the transcriptome of human primordial germ cells (PGCs) from the migrating stage to the gonadal stage at single-cell and single-base resolutions. Human PGCs show unique transcription patterns involving the simultaneous expression of both pluripotency genes and germline-specific genes, with a subset of them displaying developmental-stage-specific features. Furthermore, we analyze the DNA methylome of human PGCs and find global demethylation of their genomes. Approximately 10 to 11 weeks after gestation, the PGCs are nearly devoid of any DNA methylation, with only 7.8% and 6.0% of the median methylation levels in male and female PGCs, respectively. Our work paves the way toward deciphering the complex epigenetic reprogramming of the germline with the aim of restoring totipotency in fertilized oocytes.


Assuntos
Metilação de DNA , Células Germinativas/metabolismo , Transcriptoma , Movimento Celular , Cromossomos Humanos X , Análise por Conglomerados , Embrião de Mamíferos/metabolismo , Feminino , Histonas/metabolismo , Humanos , Masculino , Análise de Componente Principal , Fatores de Transcrição SOX/metabolismo
2.
Genome Res ; 33(8): 1354-1368, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37491077

RESUMO

The interactome networks at the DNA, RNA, and protein levels are crucial for cellular functions, and the diverse variations of these networks are heavily involved in the establishment of different cell states. We have developed a diffusion-based method, Hi-C to geometry (CTG), to obtain reliable geometric information on the chromatin from Hi-C data. CTG produces a consistent and reproducible framework for the 3D genomic structure and provides a reliable and quantitative understanding of the alterations of genomic structures under different cellular conditions. The genomic structure yielded by CTG serves as an architectural blueprint of the dynamic gene regulatory network, based on which cell-specific correspondence between gene-gene and corresponding protein-protein physical interactions, as well as transcription correlation, is revealed. We also find that gene fusion events are significantly enriched between genes of short CTG distances and are thus close in 3D space. These findings indicate that 3D chromatin structure is at least partially correlated with downstream processes such as transcription, gene regulation, and even regulatory networking through affecting protein-protein interactions.


Assuntos
Cromatina , Redes Reguladoras de Genes , Cromatina/genética , Regulação da Expressão Gênica , Cromossomos , DNA
3.
Genome Res ; 33(2): 247-260, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36828586

RESUMO

Dynamic chromatin structure acts as the regulator of transcription program in crucial processes including cancer and cell development, but a unified framework for characterizing chromatin structural evolution remains to be established. Here, we performed graph inferences on Hi-C data sets and derived the chromatin contact networks. We discovered significant decreases in information transmission efficiencies in chromatin of colorectal cancer (CRC) and T-cell acute lymphoblastic leukemia (T-ALL) compared to corresponding normal controls through graph statistics. Using network embedding in the Poincaré disk, the hierarchy depths of chromatin from CRC and T-ALL patients were found to be significantly shallower compared to their normal controls. A reverse trend of change in chromatin structure was observed during early embryo development. We found tissue-specific conservation of hierarchy order in chromatin contact networks. Our findings reveal the top-down hierarchy of chromatin organization, which is significantly attenuated in cancer.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Genoma , Cromatina , Diferenciação Celular
4.
FASEB J ; 38(5): e23499, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430222

RESUMO

Alteration of HIF-1α expression levels under hypoxic conditions affects the sequence of its downstream target genes thereby producing different effects. In order to investigate whether the effect of hypoxic compound exercise (HE) on HIF-1α expression alters cardiac pumping function, myocardial structure, and exercise capacity, we developed a suitable model of hypoxic exercise using Drosophila, a model organism, and additionally investigated the effect of hypoxic compound exercise on nocturnal sleep and activity behavior. The results showed that hypoxic compound exercise at 6% oxygen concentration for five consecutive days, lasting 1 h per day, significantly improved the cardiac stress resistance of Drosophila. The hypoxic complex exercise promoted the whole-body HIF-1α expression in Drosophila, and improved the jumping ability, climbing ability, moving speed, and moving distance. The expression of HIF-1α in the heart was increased after hypoxic exercise, which made a closer arrangement of myofilaments, an increase in the diameter of cardiac tubules, and an increase in the pumping function of the heart. The hypoxic compound exercise improved the sleep quality of Drosophila by increasing its nocturnal sleep time, the number of deep sleeps, and decreasing its nocturnal awakenings and activities. Therefore, we conclude that hypoxic compound exercise promoted the expression of HIF-1α to enhance the exercise capacity and heart pumping function of Drosophila, and improved the quality of sleep.


Assuntos
Drosophila , Tolerância ao Exercício , Subunidade alfa do Fator 1 Induzível por Hipóxia , Sono , Animais , Hipóxia Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética
5.
J Infect Dis ; 229(4): 1178-1188, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37624974

RESUMO

BACKGROUND: Sepsis-induced cardiomyopathy (SIC) is a cardiac dysfunction caused by sepsis, with mitochondrial dysfunction being a critical contributor. Pyruvate dehydrogenase kinase 4 (PDK4) is a kinase of pyruvate dehydrogenase with multifaceted actions in mitochondrial metabolism. However, its role in SIC remains unknown. METHODS: Serum PDK4 levels were measured and analyzed in 27 children with SIC, 30 children with sepsis, and 29 healthy children. In addition, for mice exhibiting SIC, the effects of PDK4 knockdown or inhibition on the function and structure of the myocardium and mitochondria were assessed. RESULTS: The findings from the analysis of children with SIC revealed that PDK4 was significantly elevated and correlated with disease severity and organ injury. Nonsurvivors displayed higher serum PDK4 levels than survivors. Furthermore, mice with SIC benefited from PDK4 knockdown or inhibition, showing improved myocardial contractile function, reduced myocardial injury, and decreased mitochondrial structural injury and dysfunction. In addition, inhibition of PDK4 decreased the inhibitory phosphorylation of PDHE1α (pyruvate dehydrogenase complex E1 subunit α) and improved abnormal pyruvate metabolism and mitochondrial dysfunction. CONCLUSIONS: PDK4 is a potential biomarker for the diagnosis and prognosis of SIC. In experimental SIC, PDK4 promoted mitochondrial dysfunction with increased phosphorylation of PDHE1α and abnormal pyruvate metabolism.


Assuntos
Cardiomiopatias , Doenças Mitocondriais , Proteínas Quinases , Sepse , Animais , Criança , Humanos , Camundongos , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Miocárdio/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Piruvatos/metabolismo , Sepse/complicações , Sepse/metabolismo
6.
Mol Cancer ; 23(1): 190, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39243015

RESUMO

Epigenetic alterations, such as those in chromatin structure and DNA methylation, have been extensively studied in a number of tumor types. But oral cancer, particularly oral adenocarcinoma, has received far less attention. Here, we combined laser-capture microdissection and muti-omics mini-bulk sequencing to systematically characterize the epigenetic landscape of oral cancer, including chromatin architecture, DNA methylation, H3K27me3 modification, and gene expression. In carcinogenesis, tumor cells exhibit reorganized chromatin spatial structures, including compromised compartment structures and altered gene-gene interaction networks. Notably, some structural alterations are observed in phenotypically non-malignant paracancerous but not in normal cells. We developed transformer models to identify the cancer propensity of individual genome loci, thereby determining the carcinogenic status of each sample. Insights into cancer epigenetic landscapes provide evidence that chromatin reorganization is an important hallmark of oral cancer progression, which is also linked with genomic alterations and DNA methylation reprogramming. In particular, regions of frequent copy number alternations in cancer cells are associated with strong spatial insulation in both cancer and normal samples. Aberrant methylation reprogramming in oral squamous cell carcinomas is closely related to chromatin structure and H3K27me3 signals, which are further influenced by intrinsic sequence properties. Our findings indicate that structural changes are both significant and conserved in two distinct types of oral cancer, closely linked to transcriptomic alterations and cancer development. Notably, the structural changes remain markedly evident in oral adenocarcinoma despite the considerably lower incidence of genomic copy number alterations and lesser extent of methylation alterations compared to squamous cell carcinoma. We expect that the comprehensive analysis of epigenetic reprogramming of different types and subtypes of primary oral tumors can provide additional guidance to the design of novel detection and therapy for oral cancer.


Assuntos
Cromatina , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Bucais , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Humanos , Cromatina/genética , Cromatina/metabolismo , Histonas/metabolismo , Histonas/genética , Redes Reguladoras de Genes , Variações do Número de Cópias de DNA
7.
BMC Microbiol ; 24(1): 311, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39182062

RESUMO

OBJECTIVE: To explore the distribution and differences in the intestinal microbiota in girls with obesity-related precocious puberty and the relationship between intestinal microbiota and obesity-related precocious puberty. METHODS: 16 S rRNA gene amplicons from fecal samples from girls with precocious puberty and obesity-complicated precocious puberty and healthy children were sequenced to define microbial taxa. RESULTS: The α- and ß-diversity indices of the microbiome significantly differed among the three groups. At the phylum level, the proportions of Firmicutes, Actinobacteriota, Bacteroidota, Bacteria, Campylobacterota, and Acidobacteriota were different. At the genus level, there were differences in Bifidobacterium, Bacteroides, Anaerostipes, Fusicatenibacter, Klebsiella, Lachnospiraceae, ErysipelotrichaceaeUCG-003, Prevotella9, Ruminococcus gnavus group, and Lachnoclostridium. Additionally, Bifidobacterium, Anaerostipes, Bacteroides, Candidatus Microthrix, Eubacterium hallii group, Klebsiella, and Erysipelotrichaceae UCG-003 were identified as bacterial biomarkers by LEfSe. Furthermore, Sellimonas, Intestinibacter, Anaerostipes, Ruminococcus gnavus group, and Oscillibacter were identified as the differential biomarkers by random forest. A receiver operating characteristic (ROC) curve was used to evaluate the biomarkers with high predictive value for obesity-related precocious puberty. Spearman correlation analysis confirmed that Anaerostipes levels were negatively correlated with body weight, body mass index (BMI), bone age, luteinizing hormone, follicle-stimulating hormone, and estradiol. CONCLUSIONS: There was a significant correlation between obesity-associated precocious puberty and gut microbiota, especially the functional characteristics of the microbiome and its interactions, which can provide a theoretical basis for the clinical intervention of obesity and precocious puberty through the microbiome.


Assuntos
Bactérias , Fezes , Microbioma Gastrointestinal , Obesidade Infantil , Puberdade Precoce , RNA Ribossômico 16S , Humanos , Puberdade Precoce/microbiologia , Feminino , Obesidade Infantil/microbiologia , Obesidade Infantil/complicações , Criança , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Fezes/microbiologia , Pré-Escolar , DNA Bacteriano/genética
8.
Bioconjug Chem ; 35(5): 575-581, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38456602

RESUMO

Living microbial therapies have been proposed as a course of action for a variety of diseases. However, problematic interactions between the host immune system and the microbial organism present significant clinical concerns. Previously, we developed a genetically encoded superhydrophilic zwitterionic peptide, termed EKP, to mimic low-immunogenic zwitterionic materials, which have been used for the chemical modification of biologics such as protein and nucleic acid drugs to increase their in vivo circulation time and reduce their immunogenicity. Herein, we demonstrate the protective effects of the EKP polypeptide genetically cloaking the surface of Saccharomyces cerevisiae as a model microbe in both in vitro and in vivo systems. First, we show that EKP peptide cloaking suppresses the interactions between yeast cells and their specific antibodies, thereby illustrating its cloaking behavior. Then, we examine the in vitro interactions between EKP peptide surface cloaked yeast cells and murine macrophage cells, which exhibit phagocytotic behavior in the presence of foreign microbes. Our results indicate that EKP cloaking suppresses macrophage interactions and thus reduces phagocytosis. Furthermore, EKP cloaked yeast cells demonstrate a prolonged circulation time in mice in vivo.


Assuntos
Peptídeos , Saccharomyces cerevisiae , Animais , Camundongos , Peptídeos/química , Peptídeos/farmacologia , Fagocitose/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia
9.
Plant Cell Environ ; 47(5): 1625-1639, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38282386

RESUMO

The circadian clock plays multiple functions in the regulation of plant growth, development and response to various abiotic stress. Here, we showed that the core oscillator component late elongated hypocotyl (LHY) was involved in rice response to salt stress. The mutations of OsLHY gene led to reduced salt tolerance in rice. Transcriptomic analyses revealed that the OsLHY gene regulates the expression of genes related to ion homeostasis and the abscisic acid (ABA) signalling pathway, including genes encoded High-affinity K+ transporters (OsHKTs) and the stress-activated protein kinases (OsSAPKs). We demonstrated that OsLHY directly binds the promoters of OsHKT1;1, OsHKT1;4 and OsSAPK9 to regulate their expression. Moreover, the ossapk9 mutants exhibited salt tolerance under salt stress. Taken together, our findings revealed that OsLHY integrates ion homeostasis and the ABA pathway to regulate salt tolerance in rice, providing insights into our understanding of how the circadian clock controls rice response to salt stress.


Assuntos
Oryza , Tolerância ao Sal , Tolerância ao Sal/genética , Hipocótilo/metabolismo , Oryza/fisiologia , Estresse Salino , Homeostase , Estresse Fisiológico , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo
10.
J Nutr ; 154(2): 369-380, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38122845

RESUMO

BACKGROUND: There is a U-shaped relationship between dietary selenium (Se) ingestion and optimal sperm quality. OBJECTIVES: This study aimed to investigate the optimal dietary dose and forms of Se for sperm quality of breeder roosters and the relevant mechanisms. METHODS: In experiment 1, 18-wk-old Jingbai laying breeder roosters were fed a Se-deficient base diet (BD, 0.06 mg Se/kg), or the BD + 0.1, 0.2, 0.3, 0.4, 0.5, or 1.0 mg Se/kg for 9 wk. In experiment 2, the roosters were fed the BD or the BD + sodium selenite (SeNa), seleno-yeast (SeY), or Se-nanoparticles (SeNPs) at 0.2 mg Se/kg for 9 wk. RESULTS: In experiment 1, added dietary 0.2 and 0.3 mg Se/kg led to higher sperm motility and lower sperm mortality than the other groups at weeks 5, 7, and/or 9. Furthermore, added dietary 0.2-0.4 mg Se/kg produced better testicular histology and/or lower testicular 8-hydroxy-deoxyguanosine than the other groups. Moreover, integrated testicular transcriptomic and cecal microbiomic analysis revealed that inflammation, cell proliferation, and apoptosis-related genes and bacteria were dysregulated by Se deficiency or excess. In experiment 2, compared with SeNa, SeNPs slightly increased sperm motility throughout the experiment, whereas SeNPs slightly reduced sperm mortality compared with SeY at week 9. Both SeY and SeNPs decreased malondialdehyde in the serum than those of SeNa, and SeNPs led to higher glutathione peroxidase (GPX) and thioredoxin reductase activities and GPX1 and B-cell lymphoma 2 protein concentrations in the testis compared with SeY and SeNa. CONCLUSIONS: The optimal dietary Se dose for reproductive health of breeder roosters is 0.25-0.35 mg Se/kg, and SeNPs displayed better effects on reproductive health than SeNa and SeY in laying breeder roosters. The optimal doses and forms of Se maintain reproductive health of roosters associated with regulation intestinal microbiota homeostasis and/or testicular redox balance, inflammation, cell proliferation, and apoptosis.


Assuntos
Microbioma Gastrointestinal , Selênio , Masculino , Animais , Testículo/metabolismo , Selênio/metabolismo , Galinhas/metabolismo , Saúde Reprodutiva , Motilidade dos Espermatozoides , Sementes , Oxirredução , Dieta , Inflamação/metabolismo , Apoptose , Proliferação de Células , Suplementos Nutricionais
11.
J Org Chem ; 89(14): 9750-9754, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38940722

RESUMO

Herein, a photocatalytic umpolung strategy for reductive carboxylation of imines for the synthesis of α-amino acids was disclosed. Carbon dioxide radical anion (CO2•-) generated from formate is the key single electron reductant in the reactions. An unprecedentedly broad substrate scope of imines with excellent reaction yields was obtained with carbon dioxide (CO2) and formate salt as carbon sources.

12.
Fish Shellfish Immunol ; 150: 109648, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777253

RESUMO

Laminin receptor (LR), which mediating cell adhesion to the extracellular matrix, plays a crucial role in cell signaling and regulatory functions. In the present study, a laminin receptor gene (SpLR) was cloned and characterized from the mud crab (Scylla paramamosain). The full length of SpLR contained an open reading frame (ORF) of 960 bp encoding 319 amino acids, a 5' untranslated region (UTR) of 66 bp and a 3' UTR of 49 bp. The predicted protein comprised two Ribosomal-S2 domains and a 40S-SA-C domain. The mRNA of SpLR was highly expressed in the gill, followed by the hepatopancreas. The expression of SpLR was up-regulated after mud crab dicistrovirus-1(MCDV-1) infection. Knocking down SpLR in vivo by RNA interference significantly down-regulated the expression of the immune genes SpJAK, SpSTAT, SpToll1, SpALF1 and SpALF5. This study shown that the expression level of SpToll1 and SpCAM in SpLR-interfered group significantly increased after MCDV-1 infection. Moreover, silencing of SpLR in vivo decreased the MCDV-1 replication and increased the survival rate of mud crabs after MCDV-1 infection. These findings collectively suggest a pivotal role for SpLR in the mud crab's response to MCDV-1 infection. By influencing the expression of critical innate immune factors and impacting viral replication dynamics, SpLR emerges as a key player in the intricate host-pathogen interaction, providing valuable insights into the molecular mechanisms underlying MCDV-1 pathogenesis in mud crabs.


Assuntos
Sequência de Aminoácidos , Proteínas de Artrópodes , Braquiúros , Regulação da Expressão Gênica , Imunidade Inata , Filogenia , Receptores de Laminina , Alinhamento de Sequência , Animais , Braquiúros/genética , Braquiúros/imunologia , Receptores de Laminina/genética , Receptores de Laminina/imunologia , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/química , Imunidade Inata/genética , Regulação da Expressão Gênica/imunologia , Alinhamento de Sequência/veterinária , Perfilação da Expressão Gênica/veterinária , Sequência de Bases
13.
Fish Shellfish Immunol ; 154: 109872, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39244075

RESUMO

Scylla paramamosain, an economically significant crab, is widely cultivated worldwide. In recent years, S. paramamosain has faced a serious threat from viral diseases due to the expansion of culture scale and increased culture density. Among these, mud crab dicistrovirus-1 (MCDV-1) stands out as highly pathogenic, presenting substantial challenges to the healthy development of mud crab aquaculture. Therefore, a comprehensive understanding of the mud crab immune response to MCDV-1 infection is imperative for devising effective disease prevention strategies. In this study, transcriptomic analyses were conducted on the hepatopancreas of mud crabs infected with MCDV-1. The findings revealed a total of 5139 differentially expressed genes (DEGs) between healthy and MCDV-1 infected mud crabs, including 3327 upregulated and 1812 downregulated DEGs. Further analysis showed that mud crabs resist MCDV-1 infection by activating humoral immune-related pathways, including the MAPK signaling pathway, MAPK signaling pathway-fly, and Toll and Imd signaling pathway. In contrast, MCDV-1 infection triggers host metabolic disorders. Several immune-related vitamin metabolism pathways (ascorbate and aldarate metabolism, retinol metabolism, and nicotinate and nicotinamide metabolism) were significantly inhibited, which may create favorable conditions for the virus's self-replication. Notably, endocytosis emerged as significantly upregulated both in GO terms and KEGG pathways, with several viral endocytosis-related pathways showing significant activation. PPI network analysis identified 9 hub genes associated with viral endocytosis within the endocytosis. Subsequent GeneMANIA analysis confirmed the association of these hub genes with viral endocytosis. Both transcriptome data and qPCR analysis revealed a significant upregulation of these hub genes post MCDV-1 infection, suggesting MCDV-1 may use viral endocytosis to enter cells and facilitate replication. This study represents the first comprehensive report on the transcriptomic profile of mud crab hepatopancreas response to MCDV-1 infection. Future investigations should focus on elucidating the mechanisms through which MCDV-1 enters cells via endocytosis, as this may holds critical implications for the development of vaccine targets.

14.
Mol Biol Rep ; 51(1): 67, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170368

RESUMO

BACKGROUND: HucMSCs had shown promising efficacy in treating childhood diseases, but oxidative stress induced by the poor microenvironment at the site of damage resulted in low cell survival after transplantation, thus preventing the cells from maximizing therapeutic efficacy. Therefore, this study aimed to investigate the role and mechanism of keap1 in oxidative stress injury of human umbilical cord mesenchymal stem cells (hucMSCs), and to provide theoretical support for improving the efficacy of stem cell therapy. METHODS: The hucMSCs were treated with hypoxic low-sugar-free serum (GSDH) to mimic the damaged site microenvironment after implantation. Adenoviral overexpression of keap1 gene of hucMSCs was performed in vitro, and cell proliferation ability was detected by CCK8 assay, crystal violet staining assay, and cell cycle assay. Cellular redox level was assessed by Amplex Red, MDA, and GSH/GSSG kit. Mitochondrial morphology was evaluated by mitotracker Red staining. ATP production was estimated by ATP detection kit. The mRNA and protein expression levels were tested by western blotting and RT-qPCR. RESULTS: GSDH treatment substantially upregulated keap1 expression. Subsequently, we found that overexpression of keap1 notably inhibited cell proliferation and caused cells to stagnate in G1 phase. At the same time, overexpression of keap1 induced the production of large amounts of H2O2 and the accumulation of MDA, but suppressed the GSH/GSSG ratio and the expression of antioxidant proteins NQO1 and SOD1, which caused oxidative stress damage. Overexpression of keap1 induced cells to produce a large number of dysfunctional mitochondria resulting in reduced ATP production. Moreover, Overexpression of keap1 significantly decreased the IKKß protein level, while upregulating IkB mRNA levels and downregulating P50 mRNA levels. CONCLUSIONS: Overexpression of keap1 may induce oxidative stress injury in hucMSCs by down-regulating IKKß expression and inhibiting NF-κB pathway activation. This implies the importance of keap1 in hucMSCs and it may be a potential gene for genetic modification of hucMSCs.


Assuntos
Peróxido de Hidrogênio , Células-Tronco Mesenquimais , Criança , Humanos , Trifosfato de Adenosina , Dissulfeto de Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Quinase I-kappa B/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , RNA Mensageiro/metabolismo , Cordão Umbilical
15.
J Phys Chem A ; 128(21): 4378-4390, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38759697

RESUMO

Theoretical studies on chemical reaction mechanisms have been crucial in organic chemistry. Traditionally, calculating the manually constructed molecular conformations of transition states for chemical reactions using quantum chemical calculations is the most commonly used method. However, this way is heavily dependent on individual experience and chemical intuition. In our previous study, we proposed a research paradigm that used enhanced sampling in molecular dynamics simulations to study chemical reactions. This approach can directly simulate the entire process of a chemical reaction. However, the computational speed limited the use of high-precision potential energy functions for simulations. To address this issue, we presented a scheme for training high-precision force fields for molecular modeling using a previously developed graph-neural-network-based molecular model, molecular configuration transformer. This potential energy function allowed for highly accurate simulations at a low computational cost, leading to more precise calculations of the mechanism of chemical reactions. We applied this approach to study a Claisen rearrangement reaction and a carbonyl insertion reaction catalyzed by manganese.

16.
Nature ; 557(7707): 701-705, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29760468

RESUMO

Ion hydration and transport at interfaces are relevant to a wide range of applied fields and natural processes1-5. Interfacial effects are particularly profound in confined geometries such as nanometre-sized channels6-8, where the mechanisms of ion transport in bulk solutions may not apply9,10. To correlate atomic structure with the transport properties of hydrated ions, both the interfacial inhomogeneity and the complex competing interactions among ions, water and surfaces require detailed molecular-level characterization. Here we constructed individual sodium ion (Na+) hydrates on a NaCl(001) surface by progressively attaching single water molecules (one to five) to the Na+ ion using a combined scanning tunnelling microscopy and noncontact atomic force microscopy system. We found that the Na+ ion hydrated with three water molecules diffuses orders of magnitude more quickly than other ion hydrates. Ab initio calculations revealed that such high ion mobility arises from the existence of a metastable state, in which the three water molecules around the Na+ ion can rotate collectively with a rather small energy barrier. This scenario would apply even at room temperature according to our classical molecular dynamics simulations. Our work suggests that anomalously high diffusion rates for specific hydration numbers of ions are generally determined by the degree of symmetry match between the hydrates and the surface lattice.

17.
Nature ; 563(7729): E18, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30135587

RESUMO

In this Letter, the links to Supplementary Videos 5, 7, 9 and 10 were incorrect, and there were some formatting errors in the Supplementary Video legends. These errors have been corrected online.

18.
Acta Pharmacol Sin ; 45(8): 1660-1672, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38589685

RESUMO

Excessive acetaminophen (APAP) can induce neutrophil activation and hepatocyte death. Along with hepatocyte dysfunction and death, NETosis (a form of neutrophil-associated inflammation) plays a vital role in the progression of acute liver injury (ALI) induced by APAP overdose. It has been shown that activated neutrophils tend to migrate towards the site of injury and participate in inflammatory processes via formation of neutrophil extracellular traps (NETs). In this study we investigated whether NETs were involved in hepatocyte injury and contributed to APAP-induced ALI progression. ALI mouse model was established by injecting overdose (350 mg/kg) of APAP. After 24 h, blood and livers were harvested for analyses. We showed that excessive APAP induced multiple programmed cell deaths of hepatocytes including pyroptosis, apoptosis and necroptosis, accompanied by significantly increased NETs markers (MPO, citH3) in the liver tissue and serum. Preinjection of DNase1 (10 U, i.p.) for two consecutive days significantly inhibited NETs formation, reduced PANoptosis and consequently alleviated excessive APAP-induced ALI. In order to clarify the communication between hepatocytes and neutrophils, we induced NETs formation in isolated neutrophils, and treated HepaRG cells with NETs. We found that NETs treatment markedly increased the activation of GSDMD, caspase-3 and MLKL, while pre-treatment with DNase1 down-regulated the expression of these proteins. Knockdown of AIM2 (a cytosolic innate immune receptor) abolished NETs-induced PANoptosis in HepaRG cells. Furthermore, excessive APAP-associated ALI was significantly attenuated in AIM2KO mice, and PANoptosis occurred less frequently. Upon restoring AIM2 expression in AIM2KO mice using AAV9 virus, both hepatic injury and PANoptosis was aggravated. In addition, we demonstrated that excessive APAP stimulated mtROS production and mitochondrial DNA (mtDNA) leakage, and mtDNA activated the TLR9 pathway to promote NETs formation. Our results uncover a novel mechanism of NETs and PANoptosis in APAP-associated ALI, which might serve as a therapeutic target.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Proteínas de Ligação a DNA , Armadilhas Extracelulares , Hepatócitos , Camundongos Endogâmicos C57BL , Neutrófilos , Animais , Acetaminofen/toxicidade , Acetaminofen/efeitos adversos , Armadilhas Extracelulares/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Masculino , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Camundongos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Humanos , Camundongos Knockout , Piroptose/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Analgésicos não Narcóticos/toxicidade
19.
J Chem Phys ; 160(11)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38506297

RESUMO

Activator protein-1 (AP-1) comprises one of the largest and most evolutionary conserved families of ubiquitous eukaryotic transcription factors that act as a pioneer factor. Diversity in DNA binding interaction of AP-1 through a conserved basic-zipper (bZIP) domain directs in-depth understanding of how AP-1 achieves its DNA binding selectivity and consequently gene regulation specificity. Here, we address the structural and dynamical aspects of the DNA target recognition process of AP-1 using microsecond-long atomistic simulations based on the structure of the human AP-1 FosB/JunD bZIP-DNA complex. Our results show the unique role of DNA shape features in selective base specific interactions, characteristic ion population, and solvation properties of DNA grooves to form the motif sequence specific AP-1-DNA complex. The TpG step at the two terminals of the AP-1 site plays an important role in the structural adjustment of DNA by modifying the helical twist in the AP-1 bound state. We addressed the role of intrinsic motion of the bZIP domain in terms of opening and closing gripper motions of DNA binding helices, in target site recognition and binding of AP-1 factors. Our observations suggest that binding to the cognate motif in DNA is mainly accompanied with the precise adjustment of closing gripper motion of DNA binding helices of the bZIP domain.


Assuntos
DNA , Fator de Transcrição AP-1 , Humanos , Fator de Transcrição AP-1/metabolismo , Motivos de Nucleotídeos , DNA/química , Sítios de Ligação , Ligação Proteica
20.
J Chem Phys ; 160(5)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38341710

RESUMO

Within the confines of a densely populated cell nucleus, chromatin undergoes intricate folding, forming loops, domains, and compartments under the governance of topological constraints and phase separation. This coordinated process inevitably introduces interference between different folding strategies. In this study, we model interphase chromatins as block copolymers with hetero-hierarchical loops within a confined system. Employing dissipative particle dynamics simulations and scaling analysis, we aim to explain how the structure and distribution of loop domains modulate the microphase separation of chromatins. Our results highlight the correlation between the microphase separation of the copolymer and the length, heterogeneity, and hierarchically nested levels of the loop domains. This correlation arises from steric repulsion intrinsic to loop domains. The steric repulsion induces variations in chain stiffness (including local orientation correlations and the persistence length), thereby influencing the degree of phase separation. Through simulations of block copolymers with distinct groups of hetero-hierarchical loop anchors, we successfully reproduce changes in phase separation across diverse cell lines, under fixed interaction parameters. These findings, in qualitative alignment with Hi-C data, suggest that the variations of loop constraints alone possess the capacity to regulate higher-order structures and the gene expressions of interphase chromatins.


Assuntos
Núcleo Celular , Cromatina , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA