Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Environ Health Res ; 32(6): 1248-1260, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33406855

RESUMO

Developmental exposure to environmental toxicants can induce transgenerational reproductive disease phenotypes through epigenetic mechanisms. We treated pregnant CD-1 (F0) mice with drinking water containing sodium arsenite (85 ppm) from days 8 to 18 of gestation. Male offspring were bred with untreated female mice until the F3 generation was produced. Our results revealed that F0 transient exposure to arsenic can cause decreased sperm quality and histological abnormalities in the F1 and F3. The overall methylation status of Igf2 DMR2 and H19 DMR was significantly lower in the arsenic-exposed group than that of the control group in both F1 and F3. The relative mRNA expression levels of Igf2 and H19 in arsenic-exposed males were significantly increased in both F1 and F3. This study indicates that ancestral exposure to arsenic may result in transgenerational inheritance of an impaired spermatogenesis phenotyping involving both epigenetic alterations and the abnormal expression of Igf2 and H19.


Assuntos
Arsênio , Animais , Arsênio/toxicidade , Metilação de DNA , Epigênese Genética , Feminino , Masculino , Camundongos , Gravidez , Reprodução , Espermatogênese
2.
J Exp Bot ; 67(19): 5799-5809, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27664270

RESUMO

Two unlinked semi-dominant loci, A (NIC1) and B (NIC2), control nicotine and related alkaloid biosynthesis in Burley tobaccos. Mutations in either or both loci (nic1 and nic2) lead to low nicotine phenotypes with altered environmental stress responses. Here we show that the transcripts derived from the pathogenesis-related (PR) protein gene PR3b are alternatively spliced to a greater extent in the nic1 and nic2 mutants of Burley 21 tobacco and the nic1nic2 double mutant. The alternative splicing results in a deletion of 65 nucleotides and introduces a premature stop codon into the coding region of PR3b that leads to a significant reduction of PR3b specific chitinase activity. Assays of PR3b splicing in F2 individuals derived from crosses between nic1 and nic2 mutants and wild-type plants showed that the splicing phenotype is controlled by the NIC1 and NIC2 loci, even though NIC1 and NIC2 are unlinked loci. Moreover, the transcriptional analyses showed that the splicing patterns of PR3b in the low-nicotine mutants were differentially regulated by jasmonate (JA) and ethylene (ET). These data suggest that the NIC1 and NIC2 loci display differential roles in regulating the alternative splicing of PR3b in Burley 21. The findings in this study have provided valuable information for extending our understanding of the broader effects of the low-nicotine mutants of Burley 21 and the mechanism by which JA and ET signalling pathways post-transcriptionally regulate the activity of PR3b protein.


Assuntos
Processamento Alternativo , Quitinases/metabolismo , Genes de Plantas/fisiologia , Nicotiana/metabolismo , Nicotina/metabolismo , Quitinases/genética , Ciclopentanos/metabolismo , Etilenos/metabolismo , Genes de Plantas/genética , Mutação/genética , Mutação/fisiologia , Nicotina/genética , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Transdução de Sinais/fisiologia , Nicotiana/genética
3.
Sci Data ; 11(1): 356, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589398

RESUMO

Rapeseed is a critical cash crop globally, and understanding its distribution can assist in refined agricultural management, ensuring a sustainable vegetable oil supply, and informing government decisions. China is the leading consumer and third-largest producer of rapeseed. However, there is a lack of widely available, long-term, and large-scale remotely sensed maps on rapeseed cultivation in China. Here this study utilizes multi-source data such as satellite images, GLDAS environmental variables, land cover maps, and terrain data to create the China annual rapeseed maps at 30 m spatial resolution from 2000 to 2022 (CARM30). Our product was validated using independent samples and showed average F1 scores of 0.869 and 0.971 for winter and spring rapeseed. The CARM30 has high spatial consistency with existing 10 m and 20 m rapeseed maps. Additionally, the CARM30-derived rapeseed planted area was significantly correlated with agricultural statistics (R2 = 0.65-0.86; p < 0.001). The obtained rapeseed distribution information can serve as a reference for stakeholders such as farmers, scientific communities, and decision-makers.


Assuntos
Brassica napus , Agricultura , China
4.
Front Plant Sci ; 14: 1210134, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409294

RESUMO

Autotetraploid rice is developed from diploid rice by doubling the chromosomes, leading to higher nutritional quality. Nevertheless, there is little information about the abundances of different metabolites and their changes during endosperm development in autotetraploid rice. In this research, two different kinds of rice, autotetraploid rice (AJNT-4x) and diploid rice (AJNT-2x), were subjected to experiments at various time points during endosperm development. A total of 422 differential metabolites, were identified by applying a widely used metabolomics technique based on LC-MS/MS. KEGG classification and enrichment analysis showed the differences in metabolites were primarily related to biosynthesis of secondary metabolites, microbial metabolism in diverse environments, biosynthesis of cofactors, and so on. Twenty common differential metabolites were found at three developmental stages of 10, 15 and 20 DAFs, which were considered the key metabolites. To identify the regulatory genes of metabolites, the experimental material was subjected to transcriptome sequencing. The DEGs were mainly enriched in starch and sucrose metabolism at 10 DAF, and in ribosome and biosynthesis of amino acids at 15 DAF, and in biosynthesis of secondary metabolites at 20 DAF. The numbers of enriched pathways and the DEGs gradually increased with endosperm development of rice. The related metabolic pathways of rice nutritional quality are cysteine and methionine metabolism, tryptophan metabolism, lysine biosynthesis and histidine metabolism, and so on. The expression level of the genes regulating lysine content was higher in AJNT-4x than in AJNT-2x. By applying CRISPR/Cas9 gene-editing technology, we identified two novel genes, OsLC4 and OsLC3, negatively regulated lysine content. These findings offer novel insight into dynamic metabolites and genes expression variations during endosperm development of different ploidy rice, which will aid in the creation of rice varieties with better grain nutritional quality.

5.
Front Plant Sci ; 12: 736419, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34819938

RESUMO

Photoperiod sensitivity is a dominant determinant for the phase transition in cereal crops. CCT (CONSTANS, CO-like, and TOC1) transcription factors (TFs) are involved in many physiological functions including the regulation of the photoperiodic flowering. However, the functional roles of CCT TFs have not been elucidated in the wild progenitors of crops. In this study, we identified 41 CCT TFs, including 19 CMF, 17 COL, and five PRR TFs in Oryza rufipogon, the presumed wild ancestor of Asian cultivated rice. There are thirty-eight orthologous CCT genes in Oryza sativa, of which ten pairs of duplicated CCT TFs are shared with O. rufipogon. We investigated daily expression patterns, showing that 36 OrCCT genes exhibited circadian rhythmic expression. A total of thirteen OrCCT genes were identified as putative flowering suppressors in O. rufipogon based on rhythmic and developmental expression patterns and transgenic phenotypes. We propose that OrCCT08, OrCCT24, and OrCCT26 are the strong functional alleles of rice DTH2, Ghd7, and OsPRR37, respectively. The SD treatment at 80 DAG stimulated flowering of the LD-grown O. rufipogon plants. Our results further showed that the nine OrCCT genes were significantly downregulated under the treatment. Our findings would provide valuable information for the construction of photoperiodic flowering regulatory network and functional characterization of the CCT TFs in both O. rufipogon and O. sativa.

6.
Plant Genome ; 13(1): e20001, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-33016624

RESUMO

African wild rice Oryza longistaminata, one of the eight AA- genome species in the genus Oryza, possesses highly valued traits, such as the rhizomatousness for perennial rice breeding, strong tolerance to biotic and abiotic stresses, and high biomass production on poor soils. To obtain the high-quality reference genome for O. longistaminata we employed a hybrid assembly approach through incorporating Illumina and PacBio sequencing datasets. The final genome assembly comprised only 107 scaffolds and was approximately ∼363.5 Mb, representing ∼92.7% of the estimated African wild rice genome (∼392 Mb). The N50 lengths of the assembled contigs and scaffolds were ∼46.49 Kb and ∼6.83 Mb, indicating ∼3.72-fold and ∼18.8-fold improvement in length compared to the earlier released assembly (∼12.5 Kb and 364 Kb, respectively). Aided with Hi-C data and syntenic relationship with O. sativa, these assembled scaffolds were anchored into 12 pseudo-chromosomes. Genome annotation and comparative genomic analysis reveal that lineage-specific expansion of gene families that respond to biotic- and abiotic stresses are of great potential for mining novel alleles to overcome major diseases and abiotic adaptation in rice breeding programs. This reference genome of African wild rice will greatly enlarge the existing database of rice genome resources and unquestionably form a solid base to understand genomic basis underlying highly valued phenotypic traits and search for novel gene sources in O. longistaminata for the future rice breeding programs.


Assuntos
Oryza , Genoma , Genômica , Oryza/genética , Análise de Sequência de DNA
7.
Front Plant Sci ; 8: 157, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28243248

RESUMO

Nicotine is a secondary metabolite that is important to the defense system and commercial quality of tobacco (Nicotiana tabacum L.). Jasmonate and its derivatives (JAs) are phytohormone regulators of nicotine formation; however, the underlying molecular mechanism of this process remains largely unclear. Owing to the amphitetraploid origin of N. tabacum, research on screening and identification of nicotine-synthetic mutants is relatively scarce. Here, we describe a method based on JA-sensitivity for screening nicotine mutants from an activation-tagged population of tobacco. In this approach, the mutants were first screened for abnormal JA responses in seed germination and root elongation, and then the levels of nicotine synthesis and expression of nicotine synthetic genes in the mutants with altered JA-response were measured to determine the nicotine-synthetic mutants. We successfully obtained five mutants that maintained stable nicotine contents and JA responses for three generations. This method is simple, effective and low-cost, and the finding of transcriptional changes of nicotine synthetic genes in the mutants shows potentials for identifying novel regulators involved in JA-regulated nicotine biosynthesis.

8.
J Huazhong Univ Sci Technolog Med Sci ; 37(2): 153-160, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28397035

RESUMO

There have been several epidemiological studies evaluating the potential association between the methylenetetrahydrofolate reductase (MTHFR) A1298C polymorphism and the risk of male infertility. However, the results obtained were inconsistent. Therefore, we performed a meta-analysis to further examine the association between the MTHFR A1298C polymorphism and male infertility. A comprehensive search was conducted to identify all eligible studies from the online literature databases published prior to January 15th, 2016. A total of 20 studies with 4293 cases and 4507 controls were included. An odds ratio (OR) and a 95% confidence interval (95% CI) were calculated to assess the strength of the association. A cumulative meta-analysis, sensitivity analysis and assessment of the publication bias were also performed in this study. The results showed that in the overall analysis, the association between the MTHFR A1298C polymorphism and male infertility was not significant. A stratified analysis by ethnicity revealed a significant increase in the risk of male infertility in the Asian population with the MTHFR A1298C polymorphism (especially in the heterozygote model: OR=1.20, 95% CI=1.01-1.44, P=0.994; the dominant model: OR=1.23, 95% CI=1.04-1.45, P=0.996; and the allele model: OR=1.20, 95% CI=1.04-1.39, P=0.985) but not in the Caucasian population. In the stratified analyses, no significant association was observed between the different types of male infertility. This meta-analysis suggests the MTHFR A1298C polymorphism may be a potential risk factor for male infertility, especially in the Asian population.


Assuntos
Povo Asiático/genética , Infertilidade Masculina/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Polimorfismo de Nucleotídeo Único , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Infertilidade Masculina/etnologia , Masculino , Razão de Chances , Fatores de Risco , População Branca/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA