RESUMO
This review summarizes the advancements in rhodium-catalyzed asymmetric C-H functionalization reactions during the last two decades. Parallel to the rapidly developed palladium catalysis, rhodium catalysis has attracted extensive attention because of its unique reactivity and selectivity in asymmetric C-H functionalization reactions. In recent years, Rh-catalyzed asymmetric C-H functionalization reactions have been significantly developed in many respects, including catalyst design, reaction development, mechanistic investigation, and application in the synthesis of complex functional molecules. This review presents an explicit outline of catalysts and ligands, mechanism, the scope of coupling reagents, and applications.
RESUMO
This present study is aimed to investigate the role of microRNA-365 (miR-365) in the development of intervertebral disc degeneration (IDD). Nucleus pulposus (NP) cells were transfected by miR-365 mimic and miR-365 inhibitor, respectively. Concomitantly, the transfection efficiency and the expression level of miRNA were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Meanwhile, NP cells apoptosis was measured through propidium iodide (PI)-AnnexinV-fluorescein isothiocyanate (FITC) apoptosis detection kit. Subsequently, immunofluorescence (IF) staining was performed to assess the expression of collagen II, aggrecan and matrix metalloproteinase 13 (MMP-13). In addition, bioinformatic prediction and Luciferase reporter assay were used to reveal the target gene of miR-365. Finally, we isolated the primary NP cells from rats and injected NP-miR-365 in rat IDD models. The results showed that overexpression of miR-365 could effectively inhibit NP cells apoptosis and MMP-13 expression and upregulate the expression of collagen II and aggrecan. Conversely, suppression of miR-365 enhanced NP cell apoptosis and elevated MMP-13 expression, but decreased the expression of collagen II and aggrecan. Moreover, the further data demonstrated that miR-365 mediated NP cell degradation through targeting ephrin-A3 (EFNA3). In addition, the cells apoptosis and catabolic markers were increased in NP cells when EFNA3 upregulated. More importantly, the vivo data supported that miR-365-NP cells injection ameliorated IDD in rats models. miR-365 could alleviate the development of IDD by regulating NP cell apoptosis and ECM degradation, which is likely mediated by targeting EFNA3. Therefore, miR-365 may be a promising therapeutic avenue for treatment IDD through EFNA3.
Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , MicroRNAs , Núcleo Pulposo , Ratos , Animais , MicroRNAs/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Efrina-A3 , Agrecanas/genética , Agrecanas/metabolismo , Matriz Extracelular/metabolismo , Apoptose/genética , Colágeno/metabolismo , Disco Intervertebral/metabolismoRESUMO
The ring-opening reaction of aromatic molecules is a significant and critical process for the construction of carbon-based and related functional materials with desired structures and properties. However, direct observation and control of such a process at a molecular level remains a challenge. Here, we employed the octahedral voids in endohedral metallofullerene (EMF) crystals as nanoreactors to accommodate aromatic m-xylene molecules and regulate the ring-opening reaction of guest m-xylene by applying a high pressure. We found that the ring-opening reaction of m-xylenes strongly depends on the degree of charge transfer between m-xylene and EMF, which can be tuned by varying the electronegativity of the carbon cages with different endohedral metals. A positive relationship between the electronegativity of fullerenes and the reactivity of m-xylene was revealed. This work demonstrates the potential of tuning the ring-opening reaction of aromatic molecules by charge transfer and manipulates the reaction at a molecule level, providing new insights into the synthesis of carbon materials and fullerene derivatives.
RESUMO
A series of reported Pt(II) carbene complexes possibly have the ability to serve as the new generation of blue emitters in luminescent devices because of their narrow emission spectra, high photoluminescence quantum yields (PLQYs), and rigid molecular skeleton. However, the combination of all carbene ligands with different multidentate structures will affect the overall planarity and horizontal dipole ratio to varying degrees, but the specific extent of this effect has not previously been analyzed in detail. In this work, density functional computation is used to study a class of platinum tetracarbene bidentate complexes with similar absorption and emission band characteristics, which is the main reason for the remarkable difference in quantum efficiency due to subtle differences in electronic states caused by different ligands. From the calculation results, the major reason, which results in significantly decrease in quantum efficiency for [Pt(cyim)2]2+, is that [Pt(cyim)2]2+ can reach the non-radiative deactivation metal-centered d-d excited state through an easier pathway compared with [Pt(meim)2]2+. The result, based on changes in the dihedral angle between ligands, can achieve the goal of improving and designing materials by adjusting the degree of the dihedral angle. (meim: bis(1,1'-dimethyl-3,3'-methylene-diimidazoline-2,2'-diylidene); cyim: bis(1,1'-dicyclohexyl-3,3'-methylene-diimidazoline-2,2'-diylidene).
RESUMO
Three new C19-diterpenoid alkaloids, nagarumines A-C (1-3), together two known alkaloids, deoxyaconitine (4) and N-deethyldeoxyaconitine (5), were isolated from the roots of Aconitum nagarum. The structures of the new compounds were elucidated by spectral methods such as 1D and 2D (1H-1H COSY, HMQC, and HMBC) NMR spectroscopy, as well as high resolution mass spectrometry. The in vivo pharmacological studies revealed that nagarumine C (3) possessed comparable antinociceptive activity (ED50 = 76.0 µmol/kg) with the positive control drugs aspirin and acetaminophen.
Assuntos
Aconitum , Alcaloides , Diterpenos , Medicamentos de Ervas Chinesas , Aconitum/química , Alcaloides/química , Diterpenos/farmacologia , Diterpenos/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Raízes de Plantas/química , Analgésicos/farmacologia , Estrutura MolecularRESUMO
A phytochemical investigation on the roots of Aconitum austroyunnanense afforded three undescribed aconitine-type C19-diterpenoid alkaloids, austroyunnanines A-C (1-3). Structural elucidation of all the compounds were performed by spectral methods such as 1 D and 2 D (1H-1H COSY, HMQC, and HMBC) NMR spectroscopy. The isolated alkaloids were tested in vivo for their antinociceptive properties. Consequently, austroyunnanine B (2) exhibited significant antinociceptive effect and its ID50 value (48.0 µmol/kg) was 2-fold less than those of the positive control drugs aspirin and acetaminophen.
Assuntos
Aconitum , Alcaloides , Diterpenos , Aconitum/química , Alcaloides/química , Aconitina/farmacologia , Aconitina/química , Diterpenos/farmacologia , Diterpenos/química , Raízes de Plantas/química , Analgésicos/farmacologia , Estrutura MolecularRESUMO
A phytochemical investigation on the 80% EtOH extract of the fruiting bodies of Ganoderma tsugae resulted into the isolation of two previously undescribed lanostane triterpenoids, 7,11-dioxo-3ß-acetyloxy-26,27-dihydroxy-lanosta-8,24-diene (1) and 7,20-dioxo-3ß-acetyloxy-11ß,15α-dihydroxy-22,23,24,25,26,27-hexanorlanosta-8-ene (2), togeher with one known lanostane triterpenoid ganodermanontriol (3). Structural elucidation of all the compounds were performed by spectral methods such as 1D and 2D (1H-1H COSY, HMQC, and HMBC) NMR spectroscopy. All the triterpenoids were in vitro evaluated for their antibacterial activities against six pathogenic microorganisms. Compound 3 exhibited some activities against three Gram positive bacteria with MIC values less than 30 µg/ml.
RESUMO
Enantioselective synthesis of N-N biaryl atropisomers is an emerging area but remains underexplored. The development of efficient synthesis of N-N biaryl atropisomers is in great demand. Herein, the construction of N-N biaryl atropisomers through iridium-catalyzed asymmetric C-H alkylation is reported for the first time. In the presence of readily available Ir precursor and Xyl-BINAP, a variety of axially chiral molecules based on indole-pyrrole skeleton were obtained in good yields (up to 98 %) with excellent enantioselectivity (up to 99 % ee). In addition, N-N bispyrrole atropisomers could also be synthesized in excellent yields and enantioselectivity. This method features perfect atom economy, wide substrate scope, and multifunctionalized products allowing diverse transformations.
RESUMO
To solve the problem of static magnetic field detection accuracy and consistency, we prepared an array of single NV centers for static magnetic field vector and gradient detection using the femtosecond laser direct writing method. The prepared single NV centers are characterized by fewer impurity defects and good stress uniformity, with an average spatial positioning error of only 0.2 µm. This array of single NV centers can achieve high accuracy magnetic field vector and gradient measurement with GBZ≈-0.047 µT/µm in the Z-axis. This result provides a new idea for large-range, high-precision magnetic field vector and gradient measurements.
RESUMO
A chemical investigation on the roots of Aconitum episcopale afforded three undescribed aconitine-type C19-diterpenoid alkaloids, episcopalines A-C (1-3). The structures of the new compounds were elucidated by spectroscopic analysis (NMR, IR, UV, and MS). The isolated alkaloids were tested in vivo for their antinociceptive properties. As a result, episcopaline B (2) showed potent antinociceptive effect and its ID50 value (55.0 µmol/kg) was 2-fold less than those of the positive control drugs aspirin and acetaminophen.
Assuntos
Aconitum , Alcaloides , Diterpenos , Aconitum/química , Alcaloides/química , Analgésicos/farmacologia , Diterpenos/química , Diterpenos/farmacologia , Estrutura Molecular , Raízes de Plantas/químicaRESUMO
Transition-metal-catalyzed enantioselective C-H functionalization has become a powerful strategy for the formation of C-C or C-X bonds, enabling the highly asymmetric synthesis of a wide range of enantioenriched compounds. Atropisomers are widely found in natural products and pharmaceutically relevant molecules, and have also found applications as privileged frameworks for chiral ligands and catalysts. Thus, research into asymmetric routes for the synthesis of atropisomers has garnered great interest in recent years. In this regard, transition-metal-catalyzed enantioselective C-H functionalization has emerged as an atom-economic and efficient strategy toward their synthesis. In this Perspective, the approaches for the synthesis of atropisomers by transition-metal-catalyzed asymmetric C-H functionalization reactions are summarized. The main focus here is on asymmetric catalysis via Pd, Rh, and Ir complexes, which have been the most frequently utilized catalysts among reported enantioselective C-H functionalization reactions. Finally, we discuss limitations on available protocols and give an outlook on possible future avenues of research.
RESUMO
Optical underwater target imaging and detection have been a tough but significant challenge in deep-sea exploration. Distant reflected signals drown in various underwater noises due to strong absorption and scattering, resulting in degraded image contrast and reduced detection range. Single-photon feature operating at the fundamental limit of the classical electromagnetic waves can broaden the realm of quantum technologies. Here we experimentally demonstrate a thresholded single-photon imaging and detection scheme to extract photon signals from the noisy underwater environment. We reconstruct the images obtained in a high-loss underwater environment by using photon-limited computational algorithms. Furthermore, we achieve a capability of underwater detection down to 0.8 photons per pulse at Jerlov type III water up to 50 meters, which is equivalent to more than 9 attenuation lengths. The results break the limits of classical underwater imaging and detection and may lead to many quantum-enhanced applications, like air-to-sea target tracking and deep-sea optical exploration.
RESUMO
CpxM(iii)-catalyzed enantioselective C-H functionalization reactions have progressed rapidly using either chiral cyclopentadienyl ligands or appropriate chiral carboxylic acids. In this context, highly reactive carbene and nitrene precursors can serve as effective C-H coupling partners, providing a straightforward and efficient approach to access chiral molecules. In this review, we highlight the developments in CpxM(iii)-catalyzed enantioselective C-H functionalization reactions through migratory insertion of metal-carbenes/nitrenes by employing chiral CpxM(iii) complexes or achiral CpxM(iii) complexes combined with chiral carboxylic acids.
RESUMO
Phytochemical investigation on the roots of Aconitum pseudostapfianum resulted in the isolation of three new aconitine-type C19-diterpenoid alkaloids, pseudostapines A-C (1-3). Their structures were determined by spectral methods such as 1D and 2D (1H-1H COSY, HMQC, NOESY and HMBC) NMR spectroscopy, in addition to high resolution mass spectrometry. The isolated alkaloids were tested in vivo for their antinociceptive potential. As a result, pseudostapine C (3) showed 2-fold more potent antinociceptive effect (ID50 = 60.3 µmol/kg) than the positive control drugs aspirin and acetaminophen.
Assuntos
Aconitum , Alcaloides , Diterpenos , Alcaloides/farmacologia , Analgésicos/farmacologia , Diterpenos/farmacologia , Estrutura Molecular , Raízes de PlantasRESUMO
Chiral cyclopentadienyl rhodium (CpRh) complex-catalyzed asymmetric C-H functionalization reactions have witnessed a significant progress in organic synthesis. In sharp contrast, the reported chiral Cp ligands are limited to C-linked Cp and are often synthetically challenging. To address these issues, we have developed a novel class of tunable chiral cyclopentadienyl ligands bearing oxygen linkers, which were efficient catalysts for C-H arylation of benzo[h]quinolines with 1-diazonaphthoquinones, affording axially chiral heterobiaryls in excellent yields and enantioselectivity (up to 99 % yield, 98.5:1.5 er). Mechanistic studies suggest that the reaction is likely to proceed by electrophilic C-H activation, and followed by coupling of the cyclometalated rhodium(III) complex with 1-diazonaphthoquinones.
RESUMO
A better understanding of neuromodulation in a behavioral system requires identification of active modulatory transmitters. Here, we used identifiable neurons in a neurobiological model system, the mollusc Aplysia, to study neuropeptides, a diverse class of neuromodulators. We took advantage of two types of feeding neurons, B48 and B1/B2, in the Aplysia buccal ganglion that might contain different neuropeptides. We performed a representational difference analysis (RDA) by subtraction of mRNAs in B48 versus mRNAs in B1/B2. The RDA identified an unusually long (2025 amino acids) peptide precursor encoding Aplysia leucokinin-like peptides (ALKs; e.g. ALK-1 and ALK-2). Northern blot analysis revealed that, compared with other ganglia (e.g. the pedal-pleural ganglion), ALK mRNA is predominantly present in the buccal ganglion, which controls feeding behavior. We then used in situ hybridization and immunohistochemistry to localize ALKs to specific neurons, including B48. MALDI-TOF MS on single buccal neurons revealed expression of 40 ALK precursor-derived peptides. Among these, ALK-1 and ALK-2 are active in the feeding network; they shortened the radula protraction phase of feeding motor programs triggered by a command-like neuron. We also found that this effect may be mediated by the ALK-stimulated enhancement of activity of an interneuron, which has previously been shown to terminate protraction. We conclude that our multipronged approach is effective for determining the structure and defining the diverse functions of leucokinin-like peptides. Notably, the ALK precursor is the first verified nonarthropod precursor for leucokinin-like peptides with a novel, marked modulatory effect on a specific parameter (protraction duration) of feeding motor programs.
Assuntos
Aplysia/fisiologia , Gânglios dos Invertebrados/fisiologia , Neuropeptídeos/metabolismo , Animais , Aplysia/química , Aplysia/citologia , Aplysia/genética , Comportamento Alimentar , Gânglios dos Invertebrados/química , Gânglios dos Invertebrados/metabolismo , Neurônios/química , Neurônios/citologia , Neurônios/metabolismo , Neuropeptídeos/análise , Neuropeptídeos/genética , Processamento de Proteína Pós-Traducional , RNA Mensageiro/análise , RNA Mensageiro/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
Three aporphine-type alkaloids (1-3), three lycorine-type alkaloids (4-6), two crinane type alkaloids (7, 8) and one phenanthridine-type alkaloid (9) were isolated from the chloroform soluble fraction of 70% ethanol extract of the bulbs of Lycoris radiata through various column chromatographies over silica gel, ODS, Sephadex LH-20 and MCI. Their structures were elucidated as (+)-N-methoxylcarbonyl-1,2-methylenedioxyl-isocorydione (1), isocorydione (2), 8-demethyl-dehydrocrebanine (3), (+)-3-hydroxy-anhydrolycorine N-oxide (4), vasconine (5), pancratinine D (6), yemenine A (7), 11-O-acetylhaemanthamine (8), and 5,6-dihydro-5-methyl-2-hydroxyphenanthridine (9) based on their chemical and physicochemical properlies and spectroscopic data. Compound 1 was a new compound and alkaloids 2-9 were isolated and identified from this plant for the first time.
Assuntos
Alcaloides de Amaryllidaceae/isolamento & purificação , Lycoris/química , Alcaloides de Amaryllidaceae/química , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/química , Raízes de Plantas/químicaRESUMO
Castanopsis orthacantha Franch. 1899 is one representative tree species distributed in the evergreen broad-leaved forests of southwestern China. This species is an important source of timber for manufacturing furniture, floors, and paper. It also plays a significant role in maintaining ecological balance and stability. To help with the genetic diversity assessment of C. orthacantha, we sequenced and assembled the first complete chloroplast genome. The length of the chloroplast genome was 160,588 bp, with a typical quadripartite structure (GenBank accession no. OR900101). The large single-copy (LSC), small single-copy (SSC), and two inverted repeats (IRs) were 90,237 bp, 18,953 bp, and 25,699 bp in length, respectively. We annotated one hundred and thirty genes across the chloroplast genome, including 86 protein-coding genes (79 are unique), 37 tRNA genes (29 are unique), and eight rRNA genes (four are unique). Seventeen genes had one intron, and four were detected with two introns. The maximum likelihood phylogeny suggested that C. orthacantha, C. lamontii, C. sclerophylla, and C. hainanensis formed a clade with a high bootstrap value. This newly sequenced chloroplast genome assembly will aid in the population genetic and phylogenetic studies of Castanopsis species in the future.
RESUMO
Konjac glucomannan consists of D-mannose and D-glucose units and is a hydrocolloid obtained from the corm of Amorphophallus species. Due to its bioactive properties, biodegradability, and hydrophilic ability, glucomannan is widely used in the fields of food, medicine, and industry. Amorphophallus species have been cultivated as cash crops in many Asian countries. Amorphophallus kachinensis Engler & Gehrmann 1911 is naturally distributed in southwestern China, Laos, and northern Thailand. To help the genetic assessment and conservation of this species, the first chloroplast genome of A. kachinensis was sequenced on the Illumina sequencing platform. We assembled the chloroplast genome using the software GetOrganelle and annotated the genome by Geseq and Cpgavas 2. The assembled chloroplast genome was 173,330 bp long, and the average GC content was 35% (GenBank accession number: PP072244). The chloroplast genome of A. kachinensis contained one large single copy, one small single copy, and two inverted repeats, with lengths of 92,030 bp, 15,118 bp, 33,091 bp, and 33,091 bp, respectively. We successfully annotated 132 genes across the genome, which was consistent with other Amorphophallus species. The phylogenetic tree indicates a sub-divergence in the Amorphophallus genus with two main genetic groups detected among eight species. The two genetic groups should be treated as distinct evolutionarily significant units when making conservation strategies. Our study enriched the chloroplast genome resources of the Amorphophallus genus and could help future phylogeographic studies, protection, and utilization of wild resources.
RESUMO
The mountainous region of southern China has been characterized by its complicated environment and topography. Amorphophallus kiusianus Makino 1913 is a representative species of extreme habitat preference that resides mainly in this region. To help study the genetic differentiation mechanisms of A. kiusianus populations, we sequenced the first chloroplast genome of this species using next-generation sequencing. The chloroplast genome was 166,269 bp in length with an average GC content of 36% (GenBank accession number: PP072243). The lengths of the large single-copy region (LSC), small single-copy region (SSC), and two inverted repeats (IRs) were 90,701 bp, 14,802 bp, 31,383 bp, and 31,383 bp, respectively. One hundred and twenty-nine genes were annotated in the chloroplast genome, including 84 protein-coding genes, 8 rRNA genes, and 37 tRNA genes. The phylogenetic tree suggested a close relationship among A. kiusianus, A. yunnanensis, and A. coaetaneus. The chloroplast genome reported in this study provides valuable genomic resources for the future phylogeographic research of A. kiusianus.