Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant J ; 110(3): 627-645, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35218099

RESUMO

Occupation of living space is one of the main driving forces of adaptive evolution, especially for aquatic plants whose leaves float on the water surface and thus have limited living space. Euryale ferox, from the angiosperm basal family Nymphaeaceae, develops large, rapidly expanding leaves to compete for space on the water surface. Microscopic observation found that the cell proliferation of leaves is almost completed underwater, while the cell expansion occurs rapidly after they grow above water. To explore the mechanism underlying the specific development of leaves, we performed sequences assembly and analyzed the genome and transcriptome dynamics of E. ferox. Through reconstruction of the three sub-genomes generated from the paleo-hexaploidization event in E. ferox, we revealed that one sub-genome was phylogenetically closer to Victoria cruziana, which also exhibits gigantic floating leaves. Further analysis revealed that while all three sub-genomes promoted the evolution of the specific leaf development in E. ferox, the genes from the sub-genome closer to V. cruziana contributed more to this adaptive evolution. Moreover, we found that genes involved in cell proliferation and expansion, photosynthesis, and energy transportation were over-retained and showed strong expression association with the leaf development stages, such as the expression divergence of SWEET orthologs as energy uploaders and unloaders in the sink and source leaf organs of E. ferox. These findings provide novel insights into the genome evolution through polyploidization, as well as the adaptive evolution regarding the leaf development accomplished through biased gene retention and expression sub-functionalization of multi-copy genes in E. ferox.


Assuntos
Nymphaeaceae , Nymphaeaceae/genética , Nymphaeaceae/metabolismo , Fotossíntese/genética , Folhas de Planta/genética , Transcriptoma/genética , Água/metabolismo
2.
BMC Genomics ; 19(1): 343, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29743016

RESUMO

BACKGROUND: Euryale ferox Salisb., an annual aquatic plant, is the only species in the genus Euryale in the Nymphaeaceae. Seeds of E. ferox are a nutritious food and also used in traditional Chinese medicine (Qian Shi in Mandarin). The molecular events that occurred during seed development in E. ferox have not yet been characterized. In this study, we performed transcriptomic analysis of four developmental stages (T1, T2, T3, and T4) in E. ferox seeds with three biological replicates per developmental stage to understand the physiological and biochemical processes during E. ferox seeds development. RESULTS: 313,844,425 clean reads were assembled into 160,107 transcripts and 85,006 unigenes with N50 lengths of 2052 bp and 1399 bp, respectively. The unigenes were annotated using five public databases (NR, COG, Swiss-Prot, KEGG, and GO). In the KEGG database, all of the unigenes were assigned to 127 pathways, of which phenylpropanoid biosynthesis was associated with the synthesis of secondary metabolites during E. ferox seed growth and development. Phenylalanine ammonia-lyase (PAL) as the first key enzyme catalyzed the conversion of phenylalanine to trans-cinnamic acid, then was related to the synthesis of flavonoids, lignins and alkaloid. The expression of PAL1 reached its peak at T3 stage, followed by a slight decrease at T4 stage. Cytochrome P450 (P450), encoded by CYP84A1 (which also called ferulate-5-hydroxylase (F5H) in Arabidopsis), was mainly involved in the biosynthesis of lignins. CONCLUSIONS: Our study provides a transcriptomic analysis to better understand the morphological changes and the accumulation of medicinal components during E. ferox seed development. The increasing expression of PAL and P450 encoded genes in phenylpropanoid biosynthesis may promote the maturation of E. ferox seed including size, color, hardness and accumulation of medicinal components.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Nymphaeaceae/genética , Proteínas de Plantas/genética , Sementes/genética , Transcriptoma , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Nymphaeaceae/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento
3.
Toxics ; 12(5)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38787086

RESUMO

Cadmium ion (Cd2+) stress is a major abiotic stressor affecting plant photosynthesis. However, the impact of sustained high-concentration Cd stress on the photosynthetic electron transport chain of aquatic plants is currently unclear. Here, prompt fluorescence (PF), delayed fluorescence (DF), and P700 signals were simultaneously measured to investigate the effect of Cd stress on photosynthesis in water dropwort [Oenanthe javanica (Blume) DC.]. We aimed to elucidate how Cd stress continuously affects the electron transport chain in this species. The PF analysis showed that with prolonged Cd stress, the FJ, FI and FP steadily decreased, accompanied by a positive shift in the K-band and L-band. Moreover, JIP-test parameters, including TRO/ABS, ABS/CSO, TRO/CSO and PIABS, were significantly reduced. The P700 signals showed that exposure to Cd stress hindered both the fast decrease and slow increase phases of the MR transient, ultimately resulting in a gradual reduction in both VPSI and VPSII-PSI. The DF analysis showed a gradual decrease in the I1 and I2 values as the duration of stress from Cd increased. The above results suggested that Cd stress affected the photosynthetic electron transport in water dropwort by influencing the amount of active PSII and PSI, primarily affecting PSII RCs in the early to mid-stages and PSI reductive activity in the later stage.

4.
Toxicon ; 190: 50-57, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33338447

RESUMO

Lake Taihu is the third largest freshwater lake located in eastern China. In recent years, it has experienced extensive cyanobacterial (Microcystis spp.) blooms that produce toxic microcystins (MCs), which may have acute and chronic hepatotoxic effects in animals and humans. Although the impact of MCs on both terrestrial and aquatic plants is well documented, the effects and underlying mechanisms of the harmful toxin MC-LR on Euryale ferox Salisb seedlings have rarely been reported. Thus, herein, the antioxidant response mechanisms and the biosynthesis of secondary metabolites during the exposure of E. ferox Salisb seedlings to varying MC-LR concentrations (0.05, 0.2, 1, and 5 µg/L) were thoroughly investigated after exposure periods (7, 14, 21 d). Our study revealed that the seedling growth was inhibited with increasing MC-LR exposure concentration that significantly induced at 1 µg/L and reached a maximum level at 5 µg/L, whereas the activity of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) in the seedling cells increased gradually with increasing MC-LR concentration and longer exposure time. The maximum malondialdehyde (MDA) content was 4.3-fold higher than that of the control group under an MC-LR concentration of 5.0 µg/L after 7 days of exposure treatment. The study of the seedling detoxification mechanism revealed that the content of total glutathione (tGSH) and reduced glutathione (GSH), as well as the activities of GSH sparse transferase (GST) and glutathione reductase (GR), increased to varying degrees and reached a maximum level at 1 µg/L. Therefore, the exposure to MC-LR can promote the accumulation of secondary metabolites and increase the activities of secondary metabolic enzymes in the seedlings. Further investigation of these antioxidative mechanisms will provide additional information for the identification and development of bio-indicators to evaluate the environmental impact of MCs on aquatic ecosystems.


Assuntos
Microcistinas/toxicidade , Nymphaeaceae/fisiologia , Animais , Antioxidantes , Catalase/metabolismo , Cianobactérias , Ecossistema , Água Doce , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Malondialdeído/metabolismo , Peroxidase , Plântula , Superóxido Dismutase/metabolismo
5.
Mitochondrial DNA B Resour ; 5(3): 2746-2747, 2020 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-33457932

RESUMO

Trapa (Lythraceae) is an aquatic plant genus widely distributed in the old world. Although Trapa species have great edible and medical value, studies related to species identification and utilization are still lacking. Here, we reported the complete chloroplast genome sequence of a cultivated species, T. bicornis. The chloroplast genome size of T. bicornis was 155,539 bp, consisting of a pair of inverted repeat (IR) regions (24,386 bp), separated by a large single copy (LSC) region (88,493 bp) and a small single copy (SSC) region (18,274 bp). A total of 130 genes were annotated, including 85 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The phylogenomic analysis supported the monophyly of Trapa, and a sister relationship between T. bicornis and T. natans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA