Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microorganisms ; 11(6)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37374908

RESUMO

Smokers (SM) have increased lung immune cell counts and inflammatory gene expression compared to electronic cigarette (EC) users and never-smokers (NS). The objective of this study is to further assess associations for SM and EC lung microbiomes with immune cell subtypes and inflammatory gene expression in samples obtained by bronchoscopy and bronchoalveolar lavage (n = 28). RNASeq with the CIBERSORT computational algorithm were used to determine immune cell subtypes, along with inflammatory gene expression and microbiome metatranscriptomics. Macrophage subtypes revealed a two-fold increase in M0 (undifferentiated) macrophages for SM and EC users relative to NS, with a concordant decrease in M2 (anti-inflammatory) macrophages. There were 68, 19, and 1 significantly differentially expressed inflammatory genes (DEG) between SM/NS, SM/EC users, and EC users/NS, respectively. CSF-1 and GATA3 expression correlated positively and inversely with M0 and M2 macrophages, respectively. Correlation profiling for DEG showed distinct lung profiles for each participant group. There were three bacteria genera-DEG correlations and three bacteria genera-macrophage subtype correlations. In this pilot study, SM and EC use were associated with an increase in undifferentiated M0 macrophages, but SM differed from EC users and NS for inflammatory gene expression. The data support the hypothesis that SM and EC have toxic lung effects influencing inflammatory responses, but this may not be via changes in the microbiome.

2.
Cancer Prev Res (Phila) ; 15(7): 435-446, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35667088

RESUMO

The microbiome has increasingly been linked to cancer. Little is known about the lung and oral cavity microbiomes in smokers, and even less for electronic cigarette (EC) users, compared with never-smokers. In a cross-sectional study (n = 28) of smokers, EC users, and never-smokers, bronchoalveolar lavage and saliva samples underwent metatranscriptome profiling to examine associations with lung and oral microbiomes. Pairwise comparisons assessed differentially abundant bacteria species. Total bacterial load was similar between groups, with no differences in bacterial diversity across lung microbiomes. In lungs, 44 bacteria species differed significantly (FDR < 0.1) between smokers/never-smokers, with most decreased in smokers. Twelve species differed between smokers/EC users, all decreased in smokers of which Neisseria sp. KEM232 and Curvibacter sp. AEP1-3 were observed. Among the top five decreased species in both comparisons, Neisseria elongata, Neisseria sicca, and Haemophilus parainfluenzae were observed. In the oral microbiome, 152 species were differentially abundant for smokers/never-smokers, and 17 between smokers/electronic cigarette users, but only 21 species were differentially abundant in both the lung and oral cavity. EC use is not associated with changes in the lung microbiome compared with never-smokers, indicating EC toxicity does not affect microbiota. Statistically different bacteria in smokers compared with EC users and never-smokers were almost all decreased, potentially due to toxic effects of cigarette smoke. The low numbers of overlapping oral and lung microbes suggest that the oral microbiome is not a surrogate for analyzing smoking-related effects in the lung. PREVENTION RELEVANCE: The microbiome affects cancer and other disease risk. The effects of e-cig usage on the lung microbiome are essentially unknown. Given the importance of lung microbiome dysbiosis populated by oral species which have been observed to drive lung cancer progression, it is important to study effects of e-cig use on microbiome.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Microbiota , Vaping , Bactérias , Estudos Transversais , Pulmão , Saliva
3.
EBioMedicine ; 85: 104301, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36215783

RESUMO

BACKGROUND: Mitochondrial DNA copy number (mtCN) maintains cellular function and homeostasis, and is linked to nuclear DNA methylation and gene expression. Increased mtCN in the blood is associated with smoking and respiratory disease, but has received little attention for target organ effects for smoking or electronic cigarette (EC) use. METHODS: Bronchoscopy biospecimens from healthy EC users, smokers (SM), and never-smokers (NS) were assessed for associations of mtCN with mtDNA point mutations, immune responses, nuclear DNA methylation and gene expression using linear regression. Ingenuity pathway analysis was used for enriched pathways. GEO and TCGA respiratory disease datasets were used to explore the involvement of mtCN-associated signatures. FINDINGS: mtCN was higher in SM than NS, but EC was not statistically different from either. Overall there was a negative association of mtCN with a point mutation in the D-loop but no difference within groups. Positive associations of mtCN with IL-2 and IL-4 were found in EC only. mtCN was significantly associated with 71,487 CpGs and 321 transcripts. 263 CpGs were correlated with nearby transcripts for genes enriched in the immune system. EC-specific mtCN-associated-CpGs and genes were differentially expressed in respiratory diseases compared to controls, including genes involved in cellular movement, inflammation, metabolism, and airway hyperresponsiveness. INTERPRETATION: Smoking may elicit a lung toxic effect through mtCN. While the impact of EC is less clear, EC-specific associations of mtCN with nuclear biomarkers suggest exposure may not be harmless. Further research is needed to understand the role of smoking and EC-related mtCN on lung disease risks. FUNDING: The National Cancer Institute, the National Heart, Lung, and Blood Institute, the Food and Drug Administration Center for Tobacco Products, the National Center For Advancing Translational Sciences, and Pelotonia Intramural Research Funds.


Assuntos
DNA Mitocondrial , Sistemas Eletrônicos de Liberação de Nicotina , Humanos , DNA Mitocondrial/genética , Fumantes , Variações do Número de Cópias de DNA , Biomarcadores , Metilação de DNA , Pulmão , Transcrição Gênica
4.
Cancer Epidemiol Biomarkers Prev ; 29(2): 443-451, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31848205

RESUMO

BACKGROUND: Nicotine-containing electronic cigarette (e-cig) use has become widespread. However, understanding the biological impact of e-cigs compared with smoking on the lung is needed. There are major gaps in knowledge for chronic effects and for an etiology to recent acute lung toxicity leading to death among vapers. METHODS: We conducted bronchoscopies in a cross-sectional study of 73 subjects (42 never-smokers, 15 e-cig users, and 16 smokers). Using bronchoalveolar lavage and brushings, we examined lung inflammation by cell counts, cytokines, genome-wide gene expression, and DNA methylation. RESULTS: There were statistically significant differences among never-smokers, e-cig users, and smokers for inflammatory cell counts and cytokines (FDR q < 0.1). The e-cig users had values intermediate between smokers and never-smokers, with levels for most of the biomarkers more similar to never-smokers. For differential gene expression and DNA methylation, e-cig users also more like never-smokers; many of these genes corresponded to smoking-related pathways, including those for xenobiotic metabolism, aryl hydrocarbon receptor signaling, and oxidative stress. Differentially methylated genes were correlated with changes in gene expression, providing evidence for biological effects of the methylation associations. CONCLUSIONS: These data indicate that e-cigs are associated with less toxicity than cigarettes for smoking-related pathways. What is unknown may be unique effects for e-cigs not measured herein, and a comparison of smokers completely switching to e-cigs compared with former smokers. Clinical trials for smokers switching to e-cigs who undergo serial bronchoscopy and larger cross-sectional studies of former smokers with and without e-cig use, and for e-cigs who relapse back to smoking, are needed. IMPACT: These data can be used for product regulation and for informing tobacco users considering or using e-cigs. What is unknown may be unique effects for e-cigs not measured herein, and clinical trials with serial bronchoscopy underway can demonstrate a direct relationship for changes in lung biomarkers.


Assuntos
Broncoscopia/estatística & dados numéricos , Fumar Cigarros/efeitos adversos , Sistemas Eletrônicos de Liberação de Nicotina , Pulmão/patologia , não Fumantes/estatística & dados numéricos , Fumantes/estatística & dados numéricos , Adulto , Biomarcadores/análise , Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Contagem de Células , Fumar Cigarros/patologia , Citocinas/análise , Citocinas/metabolismo , Metilação de DNA , Feminino , Perfilação da Expressão Gênica , Humanos , Pulmão/diagnóstico por imagem , Pulmão/imunologia , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA