Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37958879

RESUMO

Here, we report the results of our 1H nuclear magnetic resonance study of the dynamics of water molecules confined in zeolites (mordenite and ZSM-5 structures) with hierarchical porosity (micropores in zeolite lamella and mesopores formed by amorphous SiO2 in the inter-lamellar space). 1H nuclear magnetic resonance (NMR) spectra show that water experiences complex behavior within the temperature range from 173 to 298 K. The temperature dependence of 1H spin-lattice relaxation evidences the presence of three processes with different activation energies: freezing (about 30 kJ/mol), fast rotation (about 10 kJ/mol), and translational motion of water molecules (23.6 and 26.0 kJ/mol for pillared mordenite and ZSM-5, respectively). For translational motion, the activation energy is markedly lower than for water in mesoporous silica or zeolites with similar mesopore size but with disordered secondary porosity. This indicates that the process of water diffusion in zeolites with hierarchical porosity is governed not only by the presence of mesopores, but also by the mutual arrangement of meso- and micropores. The translational motion of water molecules is determined mainly by zeolite micropores.


Assuntos
Zeolitas , Zeolitas/química , Dióxido de Silício/química , Água/química , Espectroscopia de Ressonância Magnética/métodos
2.
Molecules ; 25(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066351

RESUMO

Mesostructured pillared zeolite materials in the form of lamellar phases with a crystal structure of mordenite (MOR) and ZSM-5 (MFI) were grown using CTAB as an agent that creates mesopores, in a one-pot synthesis; then into the CTAB layers separating the 2D zeolite plates were introduced by diffusion the TEOS molecules which were further hydrolyzed, and finally the material was annealed to remove the organic phase, leaving the 2D zeolite plates separated by pillars of silicon dioxide. To monitor the successive structural changes and the state of the atoms of the zeolite framework and organic compounds at all the steps of the synthesis of pillared MOR and MFI zeolites, the nuclear magnetic resonance method (NMR) with magic angle spinning (MAS) was applied. The 27Al and 29Si MAS NMR spectra confirm the regularity of the zeolite frameworks of the as synthetized materials. Analysis of the 1H and 13C MAS NMR spectra and an experiment with variable contact time evidence a strong interaction between the charged "heads" -[N(CH3)3]+ of CTAB and the zeolite framework at the place of [AlO4]- location. According to 27Al and 29Si MAS NMR the evacuation of organic cations leads to a partial but not critical collapse of the local zeolite structure.


Assuntos
Silicatos de Alumínio/química , Ressonância Magnética Nuclear Biomolecular/métodos , Zeolitas/química , Alumínio , Varredura Diferencial de Calorimetria , Cetrimônio/química , Cristalização , Isótopos , Microscopia Eletrônica de Varredura , Silício , Espectrometria por Raios X , Termogravimetria , Difração de Raios X
3.
Materials (Basel) ; 15(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36431453

RESUMO

Zeolites are materials of undeniable importance for science and technology. Since the properties of zeolites can be tuned after the inclusion of additional chemical species into the zeolitic framework, it is necessary to study the nature of zeolites after modification with transition metals to understand the new properties that were obtained, and with this information, novel applications can be proposed. This paper reports a solvent-free approach for the rapid synthesis of zeolites modified with iron and/or iron oxide particles. The samples were characterized, and their electrical and magnetic properties were investigated.

4.
Polymers (Basel) ; 15(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36616448

RESUMO

COVID-19 has drawn worldwide attention to the need for personal protective equipment. Face masks can be transformed from passive filters into active protection. For this purpose, it is sufficient to apply materials with oligodynamic effect to the fabric of the masks, which makes it possible to destroy infectious agents that have fallen on the mask with aerosol droplets from the air stream. Zeolites themselves are not oligodynamic materials, but can serve as carriers for nanoparticles of metals and/or compounds of silver, zinc, copper, and other materials with biocidal properties. Such a method, when the particles are immobilized on the surface of the substrate, will increase the lifetime of the active oligodynamic material. In this work, we present the functionalization of textile materials with zeolites to obtain active personal protective equipment with an extended service life. This is done with the aim to extend the synthesis of zeolitic materials to polymeric fabrics beyond cotton. The samples were characterized using XRD, SEM, and UV-Vis spectroscopy. Data of physicochemical studies of the obtained hybrid materials (fabrics with crystals grown on fibers) will be presented, with a focus on the effect of fabrics in the growth process of zeolites.

5.
Front Chem ; 9: 716745, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434919

RESUMO

This article reviews the current state and development of thermal catalytic processes using transition metals (TM) supported on zeolites (TM/Z), as well as the contribution of theoretical studies to understand the details of the catalytic processes. Structural features inherent to zeolites, and their corresponding properties such as ion exchange capacity, stable and very regular microporosity, the ability to create additional mesoporosity, as well as the potential chemical modification of their properties by isomorphic substitution of tetrahedral atoms in the crystal framework, make them unique catalyst carriers. New methods that modify zeolites, including sequential ion exchange, multiple isomorphic substitution, and the creation of hierarchically porous structures both during synthesis and in subsequent stages of post-synthetic processing, continue to be discovered. TM/Z catalysts can be applied to new processes such as CO2 capture/conversion, methane activation/conversion, selective catalytic NOx reduction (SCR-deNOx), catalytic depolymerization, biomass conversion and H2 production/storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA