Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(22): 11887-11893, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32430317

RESUMO

When stressed sufficiently, solid materials yield and deform plastically via reorganization of microscopic constituents. Indeed, it is possible to alter the microstructure of materials by judicious application of stress, an empirical process utilized in practice to enhance the mechanical properties of metals. Understanding the interdependence of plastic flow and microscopic structure in these nonequilibrium states, however, remains a major challenge. Here, we experimentally investigate this relationship, between the relaxation dynamics and microscopic structure of disordered colloidal solids during plastic deformation. We apply oscillatory shear to solid colloidal monolayers and study their particle trajectories as a function of shear rate in the plastic regime. Under these circumstances, the strain rate, the relaxation rate associated with plastic flow, and the sample microscopic structure oscillate together, but with different phases. Interestingly, the experiments reveal that the relaxation rate associated with plastic flow at time t is correlated with the strain rate and sample microscopic structure measured at earlier and later times, respectively. The relaxation rate, in this nonstationary condition, exhibits power-law, shear-thinning behavior and scales exponentially with sample excess entropy. Thus, measurement of sample static structure (excess entropy) provides insight about both strain rate and constituent rearrangement dynamics in the sample at earlier times.

2.
Pediatr Res ; 91(6): 1374-1382, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33947997

RESUMO

BACKGROUND: Cerebral autoregulation mechanisms help maintain adequate cerebral blood flow (CBF) despite changes in cerebral perfusion pressure. Impairment of cerebral autoregulation, during and after cardiopulmonary bypass (CPB), may increase risk of neurologic injury in neonates undergoing surgery. In this study, alterations of cerebral autoregulation were assessed in a neonatal swine model probing four perfusion strategies. METHODS: Neonatal swine (n = 25) were randomized to continuous deep hypothermic cardiopulmonary bypass (DH-CPB, n = 7), deep hypothermic circulatory arrest (DHCA, n = 7), selective cerebral perfusion (SCP, n = 7) at deep hypothermia, or normothermic cardiopulmonary bypass (control, n = 4). The correlation coefficient (LDx) between laser Doppler measurements of CBF and mean arterial blood pressure was computed at initiation and conclusion of CPB. Alterations in cerebral autoregulation were assessed by the change between initial and final LDx measurements. RESULTS: Cerebral autoregulation became more impaired (LDx increased) in piglets that underwent DH-CPB (initial LDx: median 0.15, IQR [0.03, 0.26]; final: 0.45, [0.27, 0.74]; p = 0.02). LDx was not altered in those undergoing DHCA (p > 0.99) or SCP (p = 0.13). These differences were not explained by other risk factors. CONCLUSIONS: In a validated swine model of cardiac surgery, DH-CPB had a significant effect on cerebral autoregulation, whereas DHCA and SCP did not. IMPACT: Approximately half of the patients who survive neonatal heart surgery with cardiopulmonary bypass (CPB) experience neurodevelopmental delays. This preclinical investigation takes steps to elucidate and isolate potential perioperative risk factors of neurologic injury, such as impairment of cerebral autoregulation, associated with cardiac surgical procedures involving CPB. We demonstrate a method to characterize cerebral autoregulation during CPB pump flow changes in a neonatal swine model of cardiac surgery. Cerebral autoregulation was not altered in piglets that underwent deep hypothermic circulatory arrest (DHCA) or selective cerebral perfusion (SCP), but it was altered in piglets that underwent deep hypothermic CBP.


Assuntos
Ponte Cardiopulmonar , Hipotermia Induzida , Animais , Animais Recém-Nascidos , Ponte Cardiopulmonar/efeitos adversos , Circulação Cerebrovascular , Homeostase , Suínos
3.
J Pediatr ; 236: 54-61.e1, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34004191

RESUMO

OBJECTIVE: To demonstrate that a novel noninvasive index of intracranial pressure (ICP) derived from diffuse optics-based techniques is associated with intracranial hypertension. STUDY DESIGN: We compared noninvasive and invasive ICP measurements in infants with hydrocephalus. Infants born term and preterm were eligible for inclusion if clinically determined to require cerebrospinal fluid (CSF) diversion. Ventricular size was assessed preoperatively via ultrasound measurement of the fronto-occipital (FOR) and frontotemporal (FTHR) horn ratios. Invasive ICP was obtained at the time of surgical intervention with a manometer. Intracranial hypertension was defined as invasive ICP ≥15 mmHg. Diffuse optical measurements of cerebral perfusion, oxygen extraction, and noninvasive ICP were performed preoperatively, intraoperatively, and postoperatively. Optical and ultrasound measures were compared with invasive ICP measurements, and their change in values after CSF diversion were obtained. RESULTS: We included 39 infants, 23 with intracranial hypertension. No group difference in ventricular size was found by FOR (P = .93) or FTHR (P = .76). Infants with intracranial hypertension had significantly higher noninvasive ICP (P = .02) and oxygen extraction fraction (OEF) (P = .01) compared with infants without intracranial hypertension. Increased cerebral blood flow (P = .005) and improved OEF (P < .001) after CSF diversion were observed only in infants with intracranial hypertension. CONCLUSIONS: Noninvasive diffuse optical measures (including a noninvasive ICP index) were associated with intracranial hypertension. The findings suggest that impaired perfusion from intracranial hypertension was independent of ventricular size. Hemodynamic evidence of the benefits of CSF diversion was seen in infants with intracranial hypertension. Noninvasive optical techniques hold promise for aiding the assessment of CSF diversion timing.


Assuntos
Circulação Cerebrovascular/fisiologia , Hidrocefalia/diagnóstico por imagem , Hidrocefalia/fisiopatologia , Hipertensão Intracraniana/diagnóstico , Derivações do Líquido Cefalorraquidiano , Estudos de Viabilidade , Feminino , Humanos , Hidrocefalia/cirurgia , Recém-Nascido , Hipertensão Intracraniana/etiologia , Hipertensão Intracraniana/fisiopatologia , Pressão Intracraniana/fisiologia , Masculino , Imagem Óptica , Projetos Piloto , Reprodutibilidade dos Testes , Análise Espectral
4.
Bioconjug Chem ; 32(8): 1852-1863, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34139845

RESUMO

New exogenous probes are needed for both imaging diagnostics and therapeutics. Here, we introduce a novel nanocomposite near-infrared (NIR) fluorescent imaging probe and test its potency as a photosensitizing agent for photodynamic therapy (PDT) against triple-negative breast cancer cells. The active component in the nanocomposite is a small molecule, pyropheophorbide a-phosphatidylethanolamine-QSY21 (Pyro-PtdEtn-QSY), which is imbedded into lipid nanoparticles for transport in the body. The probe targets abnormal choline metabolism in cancer cells; specifically, the overexpression of phosphatidylcholine-specific phospholipase C (PC-PLC) in breast, prostate, and ovarian cancers. Pyro-PtdEtn-QSY consists of a NIR fluorophore and a quencher, attached to a PtdEtn moiety. It is selectively activated by PC-PLC resulting in enhanced fluorescence in cancer cells compared to normal cells. In our in vitro investigation, four breast cancer cell lines showed higher probe activation levels than noncancerous control cells, immortalized human mammary gland cells, and normal human T cells. Moreover, the ability of this nanocomposite to function as a sensitizer in PDT experiments on MDA-MB-231 cells suggests that the probe is promising as a theranostic agent.


Assuntos
Fosfolipídeos/farmacologia , Fotoquimioterapia , Neoplasias de Mama Triplo Negativas/terapia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Humanos , Lipídeos/química , Lipídeos/farmacologia , Estrutura Molecular , Nanopartículas/química , Fosfolipídeos/química , Espectrofotometria Infravermelho
5.
BMC Neurol ; 21(1): 154, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33836684

RESUMO

BACKGROUND: The cortical microvascular cerebral blood flow response (CBF) to different changes in head-of-bed (HOB) position has been shown to be altered in acute ischemic stroke (AIS) by diffuse correlation spectroscopy (DCS) technique. However, the relationship between these relative ΔCBF changes and associated systemic blood pressure changes has not been studied, even though blood pressure is a major driver of cerebral blood flow. METHODS: Transcranial DCS data from four studies measuring bilateral frontal microvascular cerebral blood flow in healthy controls (n = 15), patients with asymptomatic severe internal carotid artery stenosis (ICA, n = 27), and patients with acute ischemic stroke (AIS, n = 72) were aggregated. DCS-measured CBF was measured in response to a short head-of-bed (HOB) position manipulation protocol (supine/elevated/supine, 5 min at each position). In a sub-group (AIS, n = 26; ICA, n = 14; control, n = 15), mean arterial pressure (MAP) was measured dynamically during the protocol. RESULTS: After elevated positioning, DCS CBF returned to baseline supine values in controls (p = 0.890) but not in patients with AIS (9.6% [6.0,13.3], mean 95% CI, p < 0.001) or ICA stenosis (8.6% [3.1,14.0], p = 0.003)). MAP in AIS patients did not return to baseline values (2.6 mmHg [0.5, 4.7], p = 0.018), but in ICA stenosis patients and controls did. Instead ipsilesional but not contralesional CBF was correlated with MAP (AIS 6.0%/mmHg [- 2.4,14.3], p = 0.038; ICA stenosis 11.0%/mmHg [2.4,19.5], p < 0.001). CONCLUSIONS: The observed associations between ipsilateral CBF and MAP suggest that short HOB position changes may elicit deficits in cerebral autoregulation in cerebrovascular disorders. Additional research is required to further characterize this phenomenon.


Assuntos
Pressão Arterial , Estenose das Carótidas/fisiopatologia , Circulação Cerebrovascular , AVC Isquêmico/fisiopatologia , Decúbito Dorsal/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Velocidade do Fluxo Sanguíneo/fisiologia , Pressão Sanguínea , Isquemia Encefálica/fisiopatologia , Estudos de Casos e Controles , Feminino , Decúbito Inclinado com Rebaixamento da Cabeça/fisiologia , Hemodinâmica , Homeostase , Humanos , Masculino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/fisiopatologia
6.
J Opt Soc Am A Opt Image Sci Vis ; 38(2): 245-252, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33690536

RESUMO

To compare neuroimaging data between subjects, images from individual sessions need to be aligned to a common reference or "atlas." Atlas registration of optical intrinsic signal imaging of mice, for example, is commonly performed using affine transforms with parameters determined by manual selection of canonical skull landmarks. Errors introduced by such procedures have not previously been investigated. We quantify the variability that arises from this process and consequent errors from misalignment that affect interpretation of functional neuroimaging data. We propose an improved method, using separately acquired high-resolution images and demonstrate improvements in variability and alignment using this method.


Assuntos
Processamento de Imagem Assistida por Computador , Imagem Óptica , Razão Sinal-Ruído
7.
Pediatr Res ; 88(6): 925-933, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32172282

RESUMO

BACKGROUND: Extra-corporeal membrane oxygenation (ECMO) is a life-saving intervention for severe respiratory and cardiac diseases. However, 50% of survivors have abnormal neurologic exams. Current ECMO management is guided by systemic metrics, which may poorly predict cerebral perfusion. Continuous optical monitoring of cerebral hemodynamics during ECMO holds potential to detect risk factors of brain injury such as impaired cerebrovascular autoregulation (CA). METHODS: We conducted daily measurements of microvascular cerebral blood flow (CBF), oxygen saturation, and total hemoglobin concentration using diffuse correlation spectroscopy (DCS) and frequency-domain diffuse optical spectroscopy in nine neonates. We characterize CA utilizing the correlation coefficient (DCSx) between CBF and mean arterial blood pressure (MAP) during ECMO pump flow changes. RESULTS: Average MAP and pump flow levels were weakly correlated with CBF and were not correlated with cerebral oxygen saturation. CA integrity varied between individuals and with time. Systemic measurements of MAP, pulse pressure, and left cardiac dysfunction were not predictive of impaired CA. CONCLUSIONS: Our pilot results suggest that systemic measures alone cannot distinguish impaired CA from intact CA during ECMO. Furthermore, optical neuromonitoring could help determine patient-specific ECMO pump flows for optimal CA integrity, thereby reducing risk of secondary brain injury. IMPACT: Cerebral blood flow and oxygenation are not well predicted by systemic proxies such as ECMO pump flow or blood pressure. Continuous, quantitative, bedside monitoring of cerebral blood flow and oxygenation with optical tools enables new insight into the adequacy of cerebral perfusion during ECMO. A demonstration of hybrid diffuse optical and correlation spectroscopies to continuously measure cerebral blood oxygen saturation and flow in patients on ECMO, enabling assessment of cerebral autoregulation. An observation of poor correlation of cerebral blood flow and oxygenation with systemic mean arterial pressure and ECMO pump flow, suggesting that clinical decision making guided by target values for these surrogates may not be neuroprotective. ~50% of ECMO survivors have long-term neurological deficiencies; continuous monitoring of brain health throughout therapy may reduce these tragically common sequelae through brain-focused adjustment of ECMO parameters.


Assuntos
Encéfalo/fisiopatologia , Circulação Cerebrovascular , Oxigenação por Membrana Extracorpórea/métodos , Hemodinâmica , Microcirculação , Oxigênio/metabolismo , Pressão Sanguínea , Lesões Encefálicas/fisiopatologia , Homeostase/fisiologia , Humanos , Projetos Piloto , Reprodutibilidade dos Testes , Risco , Fatores de Risco , Espalhamento de Radiação , Espectrofotometria , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Resultado do Tratamento
8.
Neurocrit Care ; 30(1): 72-80, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30030667

RESUMO

BACKGROUND: Diffuse correlation spectroscopy (DCS) noninvasively permits continuous, quantitative, bedside measurements of cerebral blood flow (CBF). To test whether optical monitoring (OM) can detect decrements in CBF producing cerebral hypoxia, we applied the OM technique continuously to probe brain-injured patients who also had invasive brain tissue oxygen (PbO2) monitors. METHODS: Comatose patients with a Glasgow Coma Score (GCS) < 8) were enrolled in an IRB-approved protocol after obtaining informed consent from the legally authorized representative. Patients underwent 6-8 h of daily monitoring. Brain PbO2 was measured with a Clark electrode. Absolute CBF was monitored with DCS, calibrated by perfusion measurements based on intravenous indocyanine green bolus administration. Variation of optical CBF and mean arterial pressure (MAP) from baseline was measured during periods of brain hypoxia (defined as a drop in PbO2 below 19 mmHg for more than 6 min from baseline (PbO2 > 21 mmHg). In a secondary analysis, we compared optical CBF and MAP during randomly selected 12-min periods of "normal" (> 21 mmHg) and "low" (< 19 mmHg) PbO2. Receiver operator characteristic (ROC) and logistic regression analysis were employed to assess the utility of optical CBF, MAP, and the two-variable combination, for discrimination of brain hypoxia from normal brain oxygen tension. RESULTS: Seven patients were enrolled and monitored for a total of 17 days. Baseline-normalized MAP and CBF significantly decreased during brain hypoxia events (p < 0.05). Through use of randomly selected, temporally sparse windows of low and high PbO2, we observed that both MAP and optical CBF discriminated between periods of brain hypoxia and normal brain oxygen tension (ROC AUC 0.761, 0.762, respectively). Further, combining these variables using logistic regression analysis markedly improved the ability to distinguish low- and high-PbO2 epochs (AUC 0.876). CONCLUSIONS: The data suggest optical techniques may be able to provide continuous individualized CBF measurement to indicate occurrence of brain hypoxia and guide brain-directed therapy.


Assuntos
Pressão Arterial/fisiologia , Circulação Cerebrovascular/fisiologia , Hipóxia-Isquemia Encefálica/diagnóstico por imagem , Hipóxia-Isquemia Encefálica/fisiopatologia , Monitorização Neurofisiológica/métodos , Adulto , Lesões Encefálicas/diagnóstico por imagem , Lesões Encefálicas/fisiopatologia , Coma/diagnóstico por imagem , Coma/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neuroimagem/métodos , Neuroimagem/normas , Monitorização Neurofisiológica/normas , Imagem Óptica/métodos , Imagem Óptica/normas , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Espectroscopia de Luz Próxima ao Infravermelho/normas
9.
J Stroke Cerebrovasc Dis ; 28(11): 104294, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31416759

RESUMO

GOALS: We quantified cerebral blood flow response to a 500 cc bolus of 0.9%% normal saline (NS) within 96 hours of acute ischemic stroke (AIS) using diffuse correlation spectroscopy (DCS). MATERIALS AND METHODS: Subjects with AIS in the anterior, middle, or posterior cerebral artery territory were enrolled within 96 hours of symptom onset. DCS measured relative cerebral blood flow (rCBF) in the bilateral frontal lobes for 15 minutes at rest (baseline), during a 30-minute infusion of 500 cc NS (bolus), and for 15 minutes after completion (post-bolus). Mean rCBF for each time period was calculated for individual subjects and median rCBF for the population was compared between time periods. Linear regression was used to evaluate for associations between rCBF and clinical features. RESULTS: Among 57 subjects, median rCBF (IQR) increased relative to baseline in the ipsilesional hemisphere by 17% (-2.0%, 43.1%), P< 0.001, and in the contralesional hemisphere by 13.3% (-4.3%, 36.0%), P < .004. No significant associations were found between ipsilesional changes in rCBF and age, race, infarct size, infarct location, presence of large vessel stenosis, NIH stroke scale, or symptom duration. CONCLUSION: A 500 cc bolus of .9% NS produced a measurable increase in rCBF in both the affected and nonaffected hemispheres. Clinical features did not predict rCBF response.


Assuntos
Isquemia Encefálica/terapia , Circulação Cerebrovascular , Hidratação , Solução Salina/administração & dosagem , Acidente Vascular Cerebral/terapia , Idoso , Velocidade do Fluxo Sanguíneo , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/fisiopatologia , Feminino , Humanos , Infusões Intravenosas , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/fisiopatologia , Fatores de Tempo , Resultado do Tratamento
10.
J Stroke Cerebrovasc Dis ; 28(6): 1483-1494, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30975462

RESUMO

INTRODUCTION: Mechanical thrombectomy is revolutionizing treatment of acute stroke due to large vessel occlusion (LVO). Unfortunately, use of the modified Thrombolysis in Cerebral Infarction score (mTICI) to characterize recanalization of the cerebral vasculature does not address microvascular perfusion of the distal parenchyma, nor provide more than a vascular "snapshot." Thus, little is known about tissue-level hemodynamic consequences of LVO recanalization. Diffuse correlation spectroscopy (DCS) and diffuse optical spectroscopy (DOS) are promising methods for continuous, noninvasive, contrast-free transcranial monitoring of cerebral microvasculature. METHODS: Here, we use a combined DCS/DOS system to monitor frontal lobe hemodynamic changes during endovascular treatment of 2 patients with ischemic stroke due to internal carotid artery (ICA) occlusions. RESULTS AND DISCUSSION: The monitoring instrument identified a recanalization-induced increase in ipsilateral cerebral blood flow (CBF) with little or no concurrent change in contralateral CBF and extracerebral blood flow. The results suggest that diffuse optical monitoring is sensitive to intracerebral hemodynamics in patients with ICA occlusion and can measure microvascular responses to mechanical thrombectomy.


Assuntos
Isquemia Encefálica/terapia , Circulação Cerebrovascular , Lobo Frontal/irrigação sanguínea , Hemodinâmica , Microcirculação , Imagem Óptica/métodos , Imagem de Perfusão/métodos , Acidente Vascular Cerebral/terapia , Trombectomia/métodos , Idoso , Idoso de 80 Anos ou mais , Velocidade do Fluxo Sanguíneo , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/fisiopatologia , Feminino , Humanos , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Análise Espectral , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/fisiopatologia , Fatores de Tempo , Resultado do Tratamento
11.
Development ; 142(14): 2405-12, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26153230

RESUMO

Deeper insight into the molecular pathways that orchestrate skeletal myogenesis should enhance our understanding of, and ability to treat, human skeletal muscle disease. It is now widely appreciated that nutrients, such as molecular oxygen (O2), modulate skeletal muscle formation. During early stages of development and regeneration, skeletal muscle progenitors reside in low O2 environments before local blood vessels and differentiated muscle form. Moreover, low O2 availability (hypoxia) impedes progenitor-dependent myogenesis in vitro through multiple mechanisms, including activation of hypoxia inducible factor 1α (HIF1α). However, whether HIF1α regulates skeletal myogenesis in vivo is not known. Here, we explored the role of HIF1α during murine skeletal muscle development and regeneration. Our results demonstrate that HIF1α is dispensable during embryonic and fetal myogenesis. However, HIF1α negatively regulates adult muscle regeneration after ischemic injury, implying that it coordinates adult myogenesis with nutrient availability in vivo. Analyses of Hif1a mutant muscle and Hif1a-depleted muscle progenitors further suggest that HIF1α represses myogenesis through inhibition of canonical Wnt signaling. Our data provide the first evidence that HIF1α regulates skeletal myogenesis in vivo and establish a novel link between HIF and Wnt signaling in this context.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/embriologia , Músculo Esquelético/metabolismo , Via de Sinalização Wnt , Animais , Diferenciação Celular , Linhagem Celular , Deleção de Genes , Imuno-Histoquímica , Isquemia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Mutação , Oxigênio/metabolismo , Perfusão , Regeneração
12.
Nat Mater ; 14(1): 101-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25218059

RESUMO

The microscopic kinetics of ubiquitous solid-solid phase transitions remain poorly understood. Here, by using single-particle-resolution video microscopy of colloidal films of diameter-tunable microspheres, we show that transitions between square and triangular lattices occur via a two-step diffusive nucleation pathway involving liquid nuclei. The nucleation pathway is favoured over the direct one-step nucleation because the energy of the solid/liquid interface is lower than that between solid phases. We also observed that nucleation precursors are particle-swapping loops rather than newly generated structural defects, and that coherent and incoherent facets of the evolving nuclei exhibit different energies and growth rates that can markedly alter the nucleation kinetics. Our findings suggest that an intermediate liquid should exist in the nucleation processes of solid-solid transitions of most metals and alloys, and provide guidance for better control of the kinetics of the transition and for future refinements of solid-solid transition theory.

13.
Angew Chem Int Ed Engl ; 55(34): 9952-5, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27409766

RESUMO

The dynamic manipulation of colloidal particle shape offers a novel design mechanism for the creation of advanced responsive materials. To this end, we introduce a versatile new strategy for shape control of anisotropic polymeric colloidal particles. The concept utilizes temperature-sensitive absorption of a suitable solvent from a binary mixture. Specifically, increasing the temperature in the vicinity of the demixing transition of a binary mixture causes more solvent to be absorbed into the polymeric colloidal particle, which, in turn, lowers the glass transition temperature of the polymer inside the particle, with a concomitant decrease in viscosity. The balance between the internal viscosity and surface tension of the particle is thus disrupted, and the anisotropic shape of the particle shifts to become more spherical. Subsequent rapid temperature quenching can halt the process, leaving the particle with an intermediate anisotropy. The resultant shape anisotropy control provides new routes for studies of the phase transitions of anisotropic colloids and enables the fabrication of unique particles for materials applications.

14.
Breast Cancer Res ; 17: 72, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-26013572

RESUMO

INTRODUCTION: Non-invasive diffuse optical tomography (DOT) and diffuse correlation spectroscopy (DCS) can detect and characterize breast cancer and predict tumor responses to neoadjuvant chemotherapy, even in patients with radiographically dense breasts. However, the relationship between measured optical parameters and pathological biomarker information needs to be further studied to connect information from optics to traditional clinical cancer biology. Thus we investigate how optically measured physiological parameters in malignant tumors such as oxy-, deoxy-hemoglobin concentration, tissue blood oxygenation, and metabolic rate of oxygen correlate with microscopic histopathological biomarkers from the same malignant tumors, e.g., Ki67 proliferation markers, CD34 stained vasculature markers and nuclear morphology. METHODS: In this pilot study, we investigate correlations of macroscopic physiological parameters of malignant tumors measured by diffuse optical technologies with microscopic histopathological biomarkers of the same tumors, i.e., the Ki67 proliferation marker, the CD34 stained vascular properties marker, and nuclear morphology. RESULTS: The tumor-to-normal relative ratio of Ki67-positive nuclei is positively correlated with DOT-measured relative tissue blood oxygen saturation (R = 0.89, p-value: 0.001), and lower tumor-to-normal deoxy-hemoglobin concentration is associated with higher expression level of Ki67 nuclei (p-value: 0.01). In a subset of the Ki67-negative group (defined by the 15 % threshold), an inverse correlation between Ki67 expression level and mammary metabolic rate of oxygen was observed (R = -0.95, p-value: 0.014). Further, CD34 stained mean-vessel-area in tumor is positively correlated with tumor-to-normal total-hemoglobin and oxy-hemoglobin concentration. Finally, we find that cell nuclei tend to have more elongated shapes in less oxygenated DOT-measured environments. CONCLUSIONS: Collectively, the pilot data are consistent with the notion that increased blood is supplied to breast cancers, and it also suggests that less conversion of oxy- to deoxy-hemoglobin occurs in more proliferative cancers. Overall, the observations corroborate expectations that macroscopic measurements of breast cancer physiology using DOT and DCS can reveal microscopic pathological properties of breast cancer and hold potential to complement pathological biomarker information.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neovascularização Patológica , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células , Feminino , Humanos , Antígeno Ki-67/metabolismo , Metabolômica/métodos , Microscopia de Fluorescência , Imagem Óptica/métodos , Consumo de Oxigênio , Projetos Piloto , Análise Espectral/métodos
15.
Langmuir ; 31(40): 11020-32, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26389788

RESUMO

We demonstrate real-time quantitative phase imaging as a new optical approach for measuring the evaporation dynamics of sessile microdroplets. Quantitative phase images of various droplets were captured during evaporation. The images enabled us to generate time-resolved three-dimensional topographic profiles of droplet shape with nanometer accuracy and, without any assumptions about droplet geometry, to directly measure important physical parameters that characterize surface wetting processes. Specifically, the time-dependent variation of the droplet height, volume, contact radius, contact angle distribution along the droplet's perimeter, and mass flux density for two different surface preparations are reported. The studies clearly demonstrate three phases of evaporation reported previously: pinned, depinned, and drying modes; the studies also reveal instances of partial pinning. Finally, the apparatus is employed to investigate the cooperative evaporation of the sprayed droplets. We observe and explain the neighbor-induced reduction in evaporation rate, that is, as compared to predictions for isolated droplets. In the future, the new experimental methods should stimulate the exploration of colloidal particle dynamics on the gas-liquid-solid interface.

16.
Anesthesiology ; 123(6): 1362-73, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26418696

RESUMO

BACKGROUND: Spinal cord ischemia occurs frequently during thoracic aneurysm repair. Current methods based on electrophysiology techniques to detect ischemia are indirect, non-specific, and temporally slow. In this article, the authors report the testing of a spinal cord blood flow and oxygenation monitor, based on diffuse correlation and optical spectroscopies, during aortic occlusion in a sheep model. METHODS: Testing was carried out in 16 Dorset sheep. Sensitivity in detecting spinal cord blood flow and oxygenation changes during aortic occlusion, pharmacologically induced hypotension and hypertension, and physiologically induced hypoxia/hypercarbia was assessed. Accuracy of the diffuse correlation spectroscopy measurements was determined via comparison with microsphere blood flow measurements. Precision was assessed through repeated measurements in response to pharmacologic interventions. RESULTS: The fiber-optic probe can be placed percutaneously and is capable of continuously measuring spinal cord blood flow and oxygenation preoperatively, intraoperatively, and postoperatively. The device is sensitive to spinal cord blood flow and oxygenation changes associated with aortic occlusion, immediately detecting a decrease in blood flow (-65 ± 32%; n = 32) and blood oxygenation (-17 ± 13%, n = 11) in 100% of trials. Comparison of spinal cord blood flow measurements by the device with microsphere measurements led to a correlation of R = 0.49, P < 0.01, and the within-sheep coefficient of variation was 9.69%. Finally, diffuse correlation spectroscopy is temporally more sensitive to ischemic interventions than motor-evoked potentials. CONCLUSION: The first-generation spinal fiber-optic monitoring device offers a novel and potentially important step forward in the monitoring of spinal cord ischemia.


Assuntos
Aorta/fisiopatologia , Tecnologia de Fibra Óptica , Hemodinâmica , Monitorização Fisiológica/métodos , Isquemia do Cordão Espinal/diagnóstico , Oclusão Terapêutica , Animais , Modelos Animais de Doenças , Hipertensão/fisiopatologia , Hipotensão/fisiopatologia , Hipóxia/fisiopatologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ovinos , Medula Espinal/fisiopatologia , Isquemia do Cordão Espinal/fisiopatologia
17.
Nature ; 459(7244): 230-3, 2009 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19444211

RESUMO

When the packing fraction is increased sufficiently, loose particulates jam to form a rigid solid in which the constituents are no longer free to move. In typical granular materials and foams, the thermal energy is too small to produce structural rearrangements. In this zero-temperature (T = 0) limit, multiple diverging and vanishing length scales characterize the approach to a sharp jamming transition. However, because thermal motion becomes relevant when the particles are small enough, it is imperative to understand how these length scales evolve as the temperature is increased. Here we used both colloidal experiments and computer simulations to progress beyond the zero-temperature limit to track one of the key parameters-the overlap distance between neighbouring particles-which vanishes at the T = 0 jamming transition. We find that this structural feature retains a vestige of its T = 0 behaviour and evolves in an unusual manner, which has masked its appearance until now. It is evident as a function of packing fraction at fixed temperature, but not as a function of temperature at fixed packing fraction or pressure. Our results conclusively demonstrate that length scales associated with the T = 0 jamming transition persist in thermal systems, not only in simulations but also in laboratory experiments.

18.
Wilderness Environ Med ; 26(2): 133-41, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25797567

RESUMO

OBJECTIVE: Alterations in cerebral blood flow (CBF) and cerebral oxygenation are implicated in altitude-associated diseases. We assessed the dynamic changes in CBF and peripheral and cerebral oxygenation engendered by ascent to altitude with partial acclimatization and hyperventilation using a combination of near-infrared spectroscopy, transcranial Doppler ultrasound, and diffuse correlation spectroscopy. METHODS: Peripheral (Spo2) and cerebral (Scto2) oxygenation, end-tidal carbon dioxide (ETCO2), and cerebral hemodynamics were studied in 12 subjects using transcranial Doppler and diffuse correlation spectroscopy (DCS) at 75 m and then 2 days and 7 days after ascending to 4559 m above sea level. After obtaining baseline measurements, subjects hyperventilated to reduce baseline ETCO2 by 50%, and a further set of measurements were obtained. RESULTS: Cerebral oxygenation and peripheral oxygenation showed a divergent response, with cerebral oxygenation decreasing at day 2 and decreasing further at day 7 at altitude, whereas peripheral oxygenation decreased on day 2 before partially rebounding on day 7. Cerebral oxygenation decreased after hyperventilation at sea level (Scto2 from 68.8% to 63.5%; P<.001), increased after hyperventilation after 2 days at altitude (Scto2 from 65.6% to 69.9%; P=.001), and did not change after hyperventilation after 7 days at altitude (Scto2 from 62.2% to 63.3%; P=.35). CONCLUSIONS: An intensification of the normal cerebral hypocapnic vasoconstrictive response occurred after partial acclimatization in the setting of divergent peripheral and cerebral oxygenation. This may help explain why hyperventilation fails to improve cerebral oxygenation after partial acclimatization as it does after initial ascent. The use of DCS is feasible at altitude and provides a direct measure of CBF indices with high temporal resolution.


Assuntos
Aclimatação/fisiologia , Cérebro/fisiologia , Hiperventilação , Oxigênio/sangue , Oxigênio/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Hemodinâmica , Humanos , Pessoa de Meia-Idade , Adulto Jovem
19.
Stroke ; 45(5): 1269-74, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24652308

RESUMO

BACKGROUND AND PURPOSE: A primary goal of acute ischemic stroke (AIS) management is to maximize perfusion in the affected region and surrounding ischemic penumbra. However, interventions to maximize perfusion, such as flat head-of-bed (HOB) positioning, are currently prescribed empirically. Bedside monitoring of cerebral blood flow (CBF) allows the effects of interventions such as flat HOB to be monitored and may ultimately be used to guide clinical management. METHODS: Cerebral perfusion was measured during HOB manipulations in 17 patients with unilateral AIS affecting large cortical territories in the anterior circulation. Simultaneous measurements of frontal CBF and arterial flow velocity were performed with diffuse correlation spectroscopy and transcranial Doppler ultrasound, respectively. Results were analyzed in the context of available clinical data and a previous study. RESULTS: Frontal CBF, averaged over the patient cohort, decreased by 17% (P=0.034) and 15% (P=0.011) in the ipsilesional and contralesional hemispheres, respectively, when HOB was changed from flat to 30°. Significant (cohort-averaged) changes in blood velocity were not observed. Individually, varying responses to HOB manipulation were observed, including paradoxical increases in CBF with increasing HOB angle. Clinical features, stroke volume, and distance to the optical probe could not explain this paradoxical response. CONCLUSIONS: A lower HOB angle results in an increase in cortical CBF without a significant change in arterial flow velocity in AIS, but there is variability across patients in this response. Bedside CBF monitoring with diffuse correlation spectroscopy provides a potential means to individualize interventions designed to optimize CBF in AIS.


Assuntos
Isquemia Encefálica/fisiopatologia , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Idoso , Velocidade do Fluxo Sanguíneo/fisiologia , Encéfalo/fisiopatologia , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/terapia , Protocolos Clínicos , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Monitorização Fisiológica , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/terapia , Decúbito Dorsal/fisiologia
20.
Neuroimage ; 85 Pt 1: 51-63, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23770408

RESUMO

Diffuse correlation spectroscopy (DCS) uses the temporal fluctuations of near-infrared (NIR) light to measure cerebral blood flow (CBF) non-invasively. Here, we provide a brief history of DCS applications in the brain with an emphasis on the underlying physical ideas, common instrumentation and validation. Then we describe recent clinical research that employs DCS-measured CBF as a biomarker of patient well-being, and as an indicator of hemodynamic and metabolic responses to functional stimuli.


Assuntos
Encéfalo/anatomia & histologia , Circulação Cerebrovascular/fisiologia , Neuroimagem/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Animais , Animais Recém-Nascidos , Biomarcadores , Calibragem , Humanos , Recém-Nascido , Neuroimagem/instrumentação , Consumo de Oxigênio/fisiologia , Medição de Risco , Espectroscopia de Luz Próxima ao Infravermelho/instrumentação , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA