Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 79(3): 175, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35244772

RESUMO

FK506-binding protein 51 (encoded by Fkpb51, also known as Fkbp5) has been associated with stress-related mental illness. To investigate its function, we studied the morphological consequences of Fkbp51 deletion. Artificial Intelligence-assisted morphological analysis revealed that male Fkbp51 knock-out (KO) mice possess more elongated dentate gyrus (DG) but shorter hippocampal height in coronal sections when compared to WT. Primary cultured Fkbp51 KO hippocampal neurons were shown to exhibit larger dendritic outgrowth than wild-type (WT) controls and pharmacological manipulation experiments suggest that this may occur through the regulation of microtubule-associated protein. Both in vitro primary culture and in vivo labeling support a role for FKBP51 in the regulation of microtubule-associated protein expression. Furthermore, Fkbp51 KO hippocampi exhibited decreases in ßIII-tubulin, MAP2, and Tau protein levels, but a greater than 2.5-fold increase in Parkin protein. Overexpression and knock-down FKBP51 demonstrated that FKBP51 negatively regulates Parkin in a dose-dependent and ubiquitin-mediated manner. These results indicate a potential novel post-translational regulatory mechanism of Parkin by FKBP51 and the significance of their interaction on disease onset. KO has more flattened hippocampus using AI-assisted measurement Both pyramidal cell layer (PCL) of CA and granular cell layer (GCL) of DG distinguishable as two layers: deep cell layer and superficial layer. Distinct MAP2 expression between deep and superficial layer between KO and WT, Higher Parkin expression in KO brain Mechanism of FKBP51 inhibition resulting in Parkin, MAP2, Tau, and Tubulin expression differences between KO and WT mice, and resulting neurite outgrowth differences.


Assuntos
Hipocampo/metabolismo , Proteínas de Ligação a Tacrolimo/genética , Ubiquitina-Proteína Ligases/metabolismo , Animais , Encéfalo/anatomia & histologia , Células Cultivadas , Hipocampo/anatomia & histologia , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a Tacrolimo/antagonistas & inibidores , Proteínas de Ligação a Tacrolimo/deficiência , Proteínas de Ligação a Tacrolimo/metabolismo , Tubulina (Proteína)/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Regulação para Cima , Proteínas tau/metabolismo
2.
Biochem Biophys Res Commun ; 529(2): 487-493, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32703456

RESUMO

Protein phosphatase 5 (PP5) plays an important role in cell proliferation, differentiation, and development. Transgenic PP5 mice (Tg-hPP5 mice) overexpressing human PP5 gene were successfully generated by embryo injection. Tg-hPP5 mice spontaneously developed corneal hyperplasia and ocular surface squamous neoplasia (OSSN). To investigate the mechanism behind PP5-induced corneal hyperplasia, we performed immunohistochemistry, quantitative real-time PCR, and Western Blotting analyses on the corneas of Tg-hPP5 mice at 2 months and 9 months of age. We provide the first demonstration that Tg-hPP5 mice develop corneal hyperplasia at 9-months of age demonstrated via histological analysis and in vitro co-transfection investigation. We also present data that the expression of p53 is significantly reduced while the expression of FGF-7 is significantly increased in Tg-hPP5 mice with corneal hyperplasia. Co-transfection of PP5, p53, and FGF-7-promoter-driven luciferase revealed that PP5 promotes while p53 inhibits FGF-7 expression, which indicates PP5 overexpression inhibits p53 phosphorylation, thereby reducing its tumor suppressor function and increasing FGF-7 expression. In conclusion, PP5 plays a pivotal role in corneal hyperplasia development and its downregulation is a potential target for corneal hyperplasia and OSSN treatment.


Assuntos
Carcinoma de Células Escamosas/genética , Córnea/patologia , Neoplasias Oculares/genética , Proteínas Nucleares/genética , Fosfoproteínas Fosfatases/genética , Regulação para Cima , Animais , Carcinoma de Células Escamosas/patologia , Proliferação de Células , Córnea/metabolismo , Neoplasias Oculares/patologia , Feminino , Humanos , Hiperplasia/genética , Hiperplasia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
4.
J Biol Chem ; 293(47): 18218-18229, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30262665

RESUMO

Protein phosphatase 5 (PP5), a serine/threonine phosphatase, has a wide range of biological functions and exhibits elevated expression in tumor cells. We previously reported that pp5-deficient mice have altered ataxia-telangiectasia mutated (ATM)-mediated signaling and function. However, this regulation was likely indirect, as ATM is not a known PP5 substrate. In the current study, we found that pp5-deficient mice are hypersensitive to genotoxic stress. This hypersensitivity was associated with the marked up-regulation of the tumor suppressor tumor protein p53 and its downstream targets cyclin-dependent kinase inhibitor 1A (p21), MDM2 proto-oncogene (MDM2), and phosphatase and tensin homolog (PTEN) in pp5-deficient tissues and cells. These observations suggested that PP5 plays a role in regulating p53 stability and function. Experiments conducted with p53+/-pp5+/- or p53+/-pp5-/- mice revealed that complete loss of PP5 reduces tumorigenesis in the p53+/- mice. Biochemical analyses further revealed that PP5 directly interacts with and dephosphorylates p53 at multiple serine/threonine residues, resulting in inhibition of p53-mediated transcriptional activity. Interestingly, PP5 expression was significantly up-regulated in p53-deficient cells, and further analysis of pp5 promoter activity revealed that p53 strongly represses PP5 transcription. Our results suggest a reciprocal regulatory interplay between PP5 and p53, providing an important feedback mechanism for the cellular response to genotoxic stress.


Assuntos
Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Motivos de Aminoácidos , Animais , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA , Regulação para Baixo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/genética , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética
5.
Biochem Biophys Res Commun ; 485(4): 761-767, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28254433

RESUMO

FK506-binding protein 51 (FKBP51) is one of the most important regulators in the GR-mediated stress response, and we previously demonstrated that loss of FKBP5 arrests adipogenesis and renders mice resistant to diet-induced obesity (DIO). However, the exact role of FKBP5 in the process of adipocyte differentiation under hypoxic conditions (the common microenvironment where adipocytes reside in obese individuals) is still unclear. Here, by isolating and culturing WT- and Fkbp5-knockout mouse embryonic fibroblasts (MEFs), and treat them at normal oxygen environment (21% O2, nomorxia) or low oxygen environment (5% O2, hypoxia). Enhanced adipogenesis were observed at hypoxia when compared to normal oxygen environment. The loss of FKBP5 significantly prevents the adipogenesis from KO MEFs under nomorxia condition, with subtle enhancement of adipogenesis at hypoxia condition, which is similar as observed in WT-MEFs at hypoxia condition but with obvious enhancement of adipogenesis. Importantly, the protein level of FKBP5 reduced in undifferentiated MEFs under acute hypoxic stress (24 h), but drastically increased during the mid-late stage of adipocyte (Day 6) differentiation from WT-MEFs under chronic hypoxia. Furthermore, we find under normal and hypoxic conditions that FKBP5 deletion alters the expression profile of adipogenesis-related genes, including those involved in lipogenesis, lipolysis, and energy metabolism, which partially explains the compromised adipocyte differentiation in FKBP51-KO MEFs. Taken together, our findings identify a novel role of FKBP5 in hypoxia-regulated adipogenesis, and provide a candidate for anti-obesity strategies targeting FKBP51.


Assuntos
Adipócitos/metabolismo , Diferenciação Celular/genética , Fibroblastos/metabolismo , Proteínas de Ligação a Tacrolimo/genética , Adipogenia/genética , Adiponectina/genética , Animais , Western Blotting , Antígenos CD36/genética , Hipóxia Celular , Células Cultivadas , Embrião de Mamíferos/citologia , Perfilação da Expressão Gênica/métodos , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas de Ligação a Tacrolimo/metabolismo , Fatores de Tempo , Proteína Desacopladora 1/genética
6.
Biochem Biophys Res Commun ; 477(1): 115-122, 2016 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-27289021

RESUMO

Myostatin (Mstn) is an inhibitor of myogenesis, regulating the number and size of skeletal myocytes. In addition to its myogenic regulatory function, Mstn plays important roles in the development of adipose tissues and in metabolism. In the present study, an Mstn knockout rat model was generated using the zinc finger nuclease (ZFN) technique in order to further investigate the function and mechanism of Mstn in metabolism. The knockout possesses a frame shift mutation resulting in an early termination codon and a truncated peptide of 109 amino acids rather than the full 376 amino acids. The absence of detectable mRNA confirmed successful knockout of Mstn. Relative to wild-type (WT) littermates, Knockout (KO) rats exhibited significantly greater body weight, body circumference, and muscle mass. However, no significant differences in grip force was observed, indicating that Mstn deletion results in greater muscle mass but not greater muscle fiber strength. Additionally, KO rats were found to possess less body fat relative to WT littermates, which is consistent with previous studies in mice and cattle. The aforementioned results indicate that Mstn knockout increases muscle mass while decreasing fat content, leading to observed increases in body weight and body circumference. The Mstn knockout rat model provides a novel means to study the role of Mstn in metabolism and Mstn-related muscle hypertrophy.


Assuntos
Miostatina/fisiologia , Tecido Adiposo , Sequência de Aminoácidos , Animais , Sequência de Bases , Feminino , Masculino , Miostatina/genética , Fenótipo , Ratos , Ratos Transgênicos
7.
Development ; 140(9): 1946-57, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23571217

RESUMO

Trabeculation and compaction of the embryonic myocardium are morphogenetic events crucial for the formation and function of the ventricular walls. Fkbp1a (FKBP12) is a ubiquitously expressed cis-trans peptidyl-prolyl isomerase. Fkbp1a-deficient mice develop ventricular hypertrabeculation and noncompaction. To determine the physiological function of Fkbp1a in regulating the intercellular and intracellular signaling pathways involved in ventricular trabeculation and compaction, we generated a series of Fkbp1a conditional knockouts. Surprisingly, cardiomyocyte-restricted ablation of Fkbp1a did not give rise to the ventricular developmental defect, whereas endothelial cell-restricted ablation of Fkbp1a recapitulated the ventricular hypertrabeculation and noncompaction observed in Fkbp1a systemically deficient mice, suggesting an important contribution of Fkbp1a within the developing endocardia in regulating the morphogenesis of ventricular trabeculation and compaction. Further analysis demonstrated that Fkbp1a is a novel negative modulator of activated Notch1. Activated Notch1 (N1ICD) was significantly upregulated in Fkbp1a-ablated endothelial cells in vivo and in vitro. Overexpression of Fkbp1a significantly reduced the stability of N1ICD and direct inhibition of Notch signaling significantly reduced hypertrabeculation in Fkbp1a-deficient mice. Our findings suggest that Fkbp1a-mediated regulation of Notch1 plays an important role in intercellular communication between endocardium and myocardium, which is crucial in controlling the formation of the ventricular walls.


Assuntos
Endocárdio/metabolismo , Ventrículos do Coração/patologia , Miocárdio/metabolismo , Receptor Notch1/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Animais , Linhagem da Célula , Células Cultivadas , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Desenvolvimento Embrionário , Endocárdio/embriologia , Endocárdio/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Ventrículos do Coração/embriologia , Ventrículos do Coração/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout/embriologia , Camundongos Knockout/metabolismo , Miocárdio/patologia , Crista Neural/metabolismo , Crista Neural/patologia , Fenótipo , Receptor Notch1/genética , Transdução de Sinais , Proteínas de Ligação a Tacrolimo/genética , Transfecção
8.
Int J Mol Sci ; 17(8)2016 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-27527158

RESUMO

FKBP5 encodes FK506-binding protein 5, a glucocorticoid receptor (GR)-binding protein implicated in various psychiatric disorders and alcohol withdrawal severity. The purpose of this study is to characterize alcohol preference and related phenotypes in Fkbp5 knockout (KO) mice and to examine the role of FKBP5 in human alcohol consumption. The following experiments were performed to characterize Fkpb5 KO mice. (1) Fkbp5 KO and wild-type (WT) EtOH consumption was tested using a two-bottle choice paradigm; (2) The EtOH elimination rate was measured after intraperitoneal (IP) injection of 2.0 g/kg EtOH; (3) Blood alcohol concentration (BAC) was measured after 3 h limited access of alcohol; (4) Brain region expression of Fkbp5 was identified using LacZ staining; (5) Baseline corticosterone (CORT) was assessed. Additionally, two SNPs, rs1360780 (C/T) and rs3800373 (T/G), were selected to study the association of FKBP5 with alcohol consumption in humans. Participants were college students (n = 1162) from 21-26 years of age with Chinese, Korean or Caucasian ethnicity. The results, compared to WT mice, for KO mice exhibited an increase in alcohol consumption that was not due to differences in taste sensitivity or alcohol metabolism. Higher BAC was found in KO mice after 3 h of EtOH access. Fkbp5 was highly expressed in brain regions involved in the regulation of the stress response, such as the hippocampus, amygdala, dorsal raphe and locus coeruleus. Both genotypes exhibited similar basal levels of plasma corticosterone (CORT). Finally, single nucleotide polymorphisms (SNPs) in FKBP5 were found to be associated with alcohol drinking in humans. These results suggest that the association between FKBP5 and alcohol consumption is conserved in both mice and humans.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Proteínas de Ligação a Tacrolimo/genética , Adulto , Consumo de Bebidas Alcoólicas/sangue , Consumo de Bebidas Alcoólicas/psicologia , Animais , Povo Asiático/genética , Encéfalo/metabolismo , Corticosterona/metabolismo , Etanol/sangue , Feminino , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polimorfismo de Nucleotídeo Único/genética , Estresse Psicológico/genética , Proteínas de Ligação a Tacrolimo/deficiência , População Branca/genética , Adulto Jovem
9.
J Biol Chem ; 289(6): 3799-810, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24371141

RESUMO

The Phosphatase of Regenerating Liver (PRL) proteins promote cell signaling and are oncogenic when overexpressed. However, our understanding of PRL function came primarily from studies with cultured cell lines aberrantly or ectopically expressing PRLs. To define the physiological roles of the PRLs, we generated PRL2 knock-out mice to study the effects of PRL deletion in a genetically controlled, organismal model. PRL2-deficient male mice exhibit testicular hypotrophy and impaired spermatogenesis, leading to decreased reproductive capacity. Mechanistically, PRL2 deficiency results in elevated PTEN level in the testis, which attenuates the Kit-PI3K-Akt pathway, resulting in increased germ cell apoptosis. Conversely, increased PRL2 expression in GC-1 cells reduces PTEN level and promotes Akt activation. Our analyses of PRL2-deficient animals suggest that PRL2 is required for spermatogenesis during testis development. The study also reveals that PRL2 promotes Kit-mediated PI3K/Akt signaling by reducing the level of PTEN that normally antagonizes the pathway. Given the strong cancer susceptibility to subtle variations in PTEN level, the ability of PRL2 to repress PTEN expression qualifies it as an oncogene and a novel target for developing anti-cancer agents.


Assuntos
Proteínas Imediatamente Precoces/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Transdução de Sinais/fisiologia , Animais , Apoptose/fisiologia , Feminino , Células Germinativas/citologia , Células Germinativas/metabolismo , Proteínas Imediatamente Precoces/genética , Masculino , Camundongos , Camundongos Knockout , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Tirosina Fosfatases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Espermatogênese/fisiologia , Testículo/citologia , Testículo/metabolismo
10.
J Infect Dis ; 209(4): 551-6, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23990570

RESUMO

The outbreak of human infections caused by novel avian-origin influenza A(H7N9) in China since March 2013 underscores the need to better understand the pathogenicity and transmissibility of these viruses in mammals. In a ferret model, the pathogenicity of influenza A(H7N9) was found to be less than that of an influenza A(H5N1) strain but comparable to that of 2009 pandemic influenza A(H1N1), based on the clinical signs, mortality, virus dissemination, and results of histopathologic analyses. Influenza A(H7N9) could replicate in the upper and lower respiratory tract, the heart, the liver, and the olfactory bulb. It is worth noting that influenza A(H7N9) exhibited a low level of transmission between ferrets via respiratory droplets. There were 4 mutations in the virus isolated from the contact ferret: D678Y in the gene encoding PB2, R157K in the gene encoding hemagglutinin (H3 numbering), I109T in the gene encoding nucleoprotein, and T10I in the gene encoding neuraminidase. These data emphasized that avian-origin influenza A(H7N9) can be transmitted between mammals, highlighting its potential for human-to-human transmissibility.


Assuntos
Subtipo H7N9 do Vírus da Influenza A/fisiologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Administração Intranasal , Animais , Peso Corporal , Modelos Animais de Doenças , Exposição Ambiental , Furões/virologia , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Pulmão/química , Pulmão/patologia , Pulmão/virologia , Cavidade Nasal/virologia , Faringe/virologia
11.
Alcohol Clin Exp Res ; 38(5): 1275-83, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24611993

RESUMO

BACKGROUND: Corticotropin-releasing hormone (CRH) and urocortins (UCNs) bind to corticotropin-releasing hormone type 2 receptor (CRF2 receptor ), a Gs protein-coupled receptor that plays an important role in modulation of anxiety and stress responses. The Crhr2 gene maps to a quantitative trait locus (QTL) for alcohol preference on chromosome 4 previously identified in inbred alcohol-preferring (iP) and-nonpreferring (iNP) F2 rats. METHODS: Real-time polymerase chain reaction was utilized to screen for differences in Crhr2 mRNA expression in the central nervous system (CNS) of male iP and iNP rats. DNA sequence analysis was then performed to screen for polymorphism in Crhr2 in order to identify genetic variation, and luciferase reporter assays were then applied to test their functional significance. Next, binding assays were used to determine whether this polymorphism affected CRF2 receptor binding affinity as well as CRF2 receptor density in the CNS. Finally, social interaction and corticosterone levels were measured in the P and NP rats before and after 30-minute restraint stress. RESULTS: Crhr2 mRNA expression studies found lower levels of Crhr2 mRNA in iP rats compared to iNP rats. In addition, DNA sequencing identified polymorphisms in the promoter region, coding region, and 3'-untranslated region between the iP and iNP rats. A 7 bp insertion in the Crhr2 promoter of iP rats altered expression in vitro as measured by reporter assays, and we found that CRF2 receptor density was lower in the amygdala of iP as compared to iNP rats. Male P rats displayed decreased social interaction and significantly higher corticosterone levels directly following 30-minute restraint when compared to male NP rats. CONCLUSIONS: This study identified Crhr2 as a candidate gene of interest underlying the chromosome 4 QTL for alcohol consumption that was previously identified in the P and NP model. Crhr2 promoter polymorphism is associated with reduced mRNA expression in certain brain regions, particularly the amygdala, and lowered the density of CRF2 receptor in the amygdala of iP compared to iNP rats. Together, these differences between the animals may contribute to the drinking disparity as well as the anxiety differences of the P and NP rats.


Assuntos
Alcoolismo/genética , Sistema Hipotálamo-Hipofisário/fisiopatologia , Sistema Hipófise-Suprarrenal/fisiopatologia , Receptores de Hormônio Liberador da Corticotropina/genética , Alcoolismo/fisiopatologia , Animais , Química Encefálica/efeitos dos fármacos , Química Encefálica/genética , Corticosterona/sangue , Masculino , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas , Ratos , Ratos Endogâmicos , Receptores de Hormônio Liberador da Corticotropina/análise , Receptores de Hormônio Liberador da Corticotropina/fisiologia , Estresse Psicológico/fisiopatologia
12.
Cell Biosci ; 14(1): 1, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167156

RESUMO

BACKGROUND AND AIMS: Previously, we found that FK506 binding protein 51 (Fkbp51) knockout (KO) mice resist high fat diet-induced fatty liver and alcohol-induced liver injury. The aim of this research is to identify the mechanism of Fkbp51 in liver injury. METHODS: Carbon tetrachloride (CCl4)-induced liver injury was compared between Fkbp51 KO and wild type (WT) mice. Step-wise and in-depth analyses were applied, including liver histology, biochemistry, RNA-Seq, mitochondrial respiration, electron microscopy, and molecular assessments. The selective FKBP51 inhibitor (SAFit2) was tested as a potential treatment to ameliorate liver injury. RESULTS: Fkbp51 knockout mice exhibited protection against liver injury, as evidenced by liver histology, reduced fibrosis-associated markers and lower serum liver enzyme levels. RNA-seq identified differentially expressed genes and involved pathways, such as fibrogenesis, inflammation, mitochondria, and oxidative metabolism pathways and predicted the interaction of FKBP51, Parkin, and HSP90. Cellular studies supported co-localization of Parkin and FKBP51 in the mitochondrial network, and Parkin was shown to be expressed higher in the liver of KO mice at baseline and after liver injury relative to WT. Further functional analysis identified that KO mice exhibited increased ATP production and enhanced mitochondrial respiration. KO mice have increased mitochondrial size, increased autophagy/mitophagy and mitochondrial-derived vesicles (MDV), and reduced reactive oxygen species (ROS) production, which supports enhancement of mitochondrial quality control (MQC). Application of SAFit2, an FKBP51 inhibitor, reduced the effects of CCl4-induced liver injury and was associated with increased Parkin, pAKT, and ATP production. CONCLUSIONS: Downregulation of FKBP51 represents a promising therapeutic target for liver disease treatment.

13.
J Biol Chem ; 287(38): 32172-9, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22791713

RESUMO

The PRL (phosphatase of regenerating liver) phosphatases are implicated in the control of cell proliferation and invasion. Aberrant PRL expression is associated with progression and metastasis of multiple cancers. However, the specific in vivo function of the PRLs remains elusive. Here we show that deletion of PRL2, the most ubiquitously expressed PRL family member, leads to impaired placental development and retarded growth at both embryonic and adult stages. Ablation of PRL2 inactivates Akt and blocks glycogen cell proliferation, resulting in reduced spongiotrophoblast and decidual layers in the placenta. These structural defects cause placental hypotrophy and insufficiency, leading to fetal growth retardation. We demonstrate that the tumor suppressor PTEN is elevated in PRL2-deficient placenta. Biochemical analyses indicate that PRL2 promotes Akt activation by down-regulating PTEN through the proteasome pathway. This study provides the first evidence that PRL2 is required for extra-embryonic development and associates the oncogenic properties of PRL2 with its ability to negatively regulate PTEN, thereby activating the PI3K-Akt pathway.


Assuntos
Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/fisiologia , PTEN Fosfo-Hidrolase/metabolismo , Placenta/metabolismo , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/fisiologia , Alelos , Proteínas Angiogênicas , Animais , Movimento Celular , Proliferação de Células , Cicloeximida/farmacologia , Células-Tronco Embrionárias/citologia , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Oncogênicas/metabolismo , Gravidez , Prenhez , Proteínas Proto-Oncogênicas c-akt/metabolismo , Trofoblastos/metabolismo
14.
Virol J ; 10: 253, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23927489

RESUMO

BACKGROUND: The current study was conducted to establish animal models (including mouse and ferret) for the novel avian-origin H7N9 influenza virus. FINDINGS: A/Anhui/1/2013 (H7N9) virus was administered by intranasal instillation to groups of mice and ferrets, and animals developed typical clinical signs including body weight loss (mice and ferrets), ruffled fur (mice), sneezing (ferrets), and death (mice). Peak virus shedding from respiratory tract was observed on 2 days post inoculation (d.p.i.) for mice and 3-5 d.p.i. for ferrets. Virus could also be detected in brain, liver, spleen, kidney, and intestine from inoculated mice, and in heart, liver, and olfactory bulb from inoculated ferrets. The inoculation of H7N9 could elicit seroconversion titers up to 1280 in ferrets and 160 in mice. Leukopenia, significantly reduced lymphocytes but increased neutrophils were also observed in mouse and ferret models. CONCLUSIONS: The mouse and ferret model enables detailed studies of the pathogenesis of this illness and lay the foundation for drug or vaccine evaluation.


Assuntos
Modelos Animais de Doenças , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Estruturas Animais/virologia , Animais , Anticorpos Antivirais/sangue , Feminino , Furões , Subtipo H7N9 do Vírus da Influenza A/isolamento & purificação , Camundongos , Camundongos Endogâmicos BALB C , Carga Viral
15.
Circ Res ; 108(9): 1042-52, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21372286

RESUMO

RATIONALE: FK506 binding protein (FKBP)12 is a known cis-trans peptidyl prolyl isomerase and highly expressed in the heart. Its role in regulating postnatal cardiac function remains largely unknown. METHODS AND RESULTS: We generated FKBP12 overexpressing transgenic (αMyHC-FKBP12) mice and cardiomyocyte-restricted FKBP12 conditional knockout (FKBP12(f/f)/αMyHC-Cre) mice and analyzed their cardiac electrophysiology in vivo and in vitro. A high incidence (38%) of sudden death was found in αMyHC-FKBP12 mice. Surface and ambulatory ECGs documented cardiac conduction defects, which were further confirmed by electric measurements and optical mapping in Langendorff-perfused hearts. αMyHC-FKBP12 hearts had slower action potential upstrokes and longer action potential durations. Whole-cell patch-clamp analyses demonstrated an ≈ 80% reduction in peak density of the tetrodotoxin-resistant, voltage-gated sodium current I(Na) in αMyHC-FKBP12 ventricular cardiomyocytes, a slower recovery of I(Na) from inactivation, shifts of steady-state activation and inactivation curves of I(Na) to more depolarized potentials, and augmentation of late I(Na), suggesting that the arrhythmogenic phenotype of αMyHC-FKBP12 mice is attributable to abnormal I(Na). Ventricular cardiomyocytes isolated from FKBP12(f/f)/αMyHC-Cre hearts showed faster action potential upstrokes and a more than 2-fold increase in peak I(Na) density. Dialysis of exogenous recombinant FKBP12 protein into FKBP12-deficient cardiomyocytes promptly recapitulated alterations in I(Na) seen in αMyHC-FKBP12 myocytes. CONCLUSIONS: FKBP12 is a critical regulator of I(Na) and is important for cardiac arrhythmogenic physiology. FKPB12-mediated dysregulation of I(Na) may underlie clinical arrhythmias associated with FK506 administration.


Assuntos
Arritmias Cardíacas/fisiopatologia , Sistema de Condução Cardíaco/fisiologia , Canais de Sódio/fisiologia , Proteína 1A de Ligação a Tacrolimo/genética , Proteína 1A de Ligação a Tacrolimo/metabolismo , Potenciais de Ação/fisiologia , Animais , Arritmias Cardíacas/genética , Cálcio/metabolismo , Canais de Cálcio Tipo L/fisiologia , Técnicas In Vitro , Integrases/genética , Síndrome do QT Longo/genética , Síndrome do QT Longo/fisiopatologia , Camundongos , Camundongos Knockout , Contração Miocárdica/fisiologia , Miócitos Cardíacos/fisiologia , Técnicas de Patch-Clamp , Canais de Potássio/fisiologia
16.
Cells ; 13(1)2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-38201293

RESUMO

High levels of alcohol intake alter brain gene expression and can produce long-lasting effects. FK506-binding protein 51 (FKBP51) encoded by Fkbp5 is a physical and cellular stress response gene and has been associated with alcohol consumption and withdrawal severity. Fkbp5 has been previously linked to neurite outgrowth and hippocampal morphology, sex differences in stress response, and epigenetic modification. Presently, primary cultured Fkbp5 KO and WT mouse neurons were examined for neurite outgrowth and mitochondrial signal with and without alcohol. We found neurite specification differences between KO and WT; particularly, mesh-like morphology was observed after alcohol treatment and confirmed higher MitoTracker signal in cultured neurons of Fkbp5 KO compared to WT at both naive and alcohol-treated conditions. Brain regions that express FKBP51 protein were identified, and hippocampus was confirmed to possess a high level of expression. RNA-seq profiling was performed using the hippocampus of naïve or alcohol-injected (2 mg EtOH/Kg) male and female Fkbp5 KO and WT mice. Differentially expressed genes (DEGs) were identified between Fkbp5 KO and WT at baseline and following alcohol treatment, with female comparisons possessing a higher number of DEGs than male comparisons. Pathway analysis suggested that genes affecting calcium signaling, lipid metabolism, and axon guidance were differentially expressed at naïve condition between KO and WT. Alcohol treatment significantly affected pathways and enzymes involved in biosynthesis (Keto, serine, and glycine) and signaling (dopamine and insulin receptor), and neuroprotective role. Functions related to cell morphology, cell-to-cell signaling, lipid metabolism, injury response, and post-translational modification were significantly altered due to alcohol. In summary, Fkbp5 plays a critical role in the response to acute alcohol treatment by altering metabolism and signaling-related genes.


Assuntos
Transtornos Relacionados ao Uso de Álcool , Etanol , Feminino , Masculino , Animais , Camundongos , Etanol/farmacologia , Metabolismo dos Lipídeos , Injeções , Consumo de Bebidas Alcoólicas , Glicina
17.
J Biol Chem ; 286(50): 42911-22, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-21994940

RESUMO

Glucocorticoid receptor-α (GRα) and peroxisome proliferator-activated receptor-γ (PPARγ) regulate adipogenesis by controlling the balance between lipolysis and lipogenesis. Here, we show that protein phosphatase 5 (PP5), a nuclear receptor co-chaperone, reciprocally modulates the lipometabolic activities of GRα and PPARγ. Wild-type and PP5-deficient (KO) mouse embryonic fibroblast cells were used to show binding of PP5 to both GRα and PPARγ. In response to adipogenic stimuli, PP5-KO mouse embryonic fibroblast cells showed almost no lipid accumulation with reduced expression of adipogenic markers (aP2, CD36, and perilipin) and low fatty-acid synthase enzymatic activity. This was completely reversed following reintroduction of PP5. Loss of PP5 increased phosphorylation of GRα at serines 212 and 234 and elevated dexamethasone-induced activity at prolipolytic genes. In contrast, PPARγ in PP5-KO cells was hyperphosphorylated at serine 112 but had reduced rosiglitazone-induced activity at lipogenic genes. Expression of the S112A mutant rescued PPARγ transcriptional activity and lipid accumulation in PP5-KO cells pointing to Ser-112 as an important residue of PP5 action. This work identifies PP5 as a fulcrum point in nuclear receptor control of the lipolysis/lipogenesis equilibrium and as a potential target in the treatment of obesity.


Assuntos
Proteínas Nucleares/metabolismo , PPAR gama/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Receptores de Glucocorticoides/metabolismo , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Animais , Western Blotting , Células Cultivadas , Dexametasona/farmacologia , Eletroforese , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Camundongos , Proteínas Nucleares/genética , PPAR gama/genética , Fosfoproteínas Fosfatases/genética , Ligação Proteica , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Glucocorticoides/genética
18.
J Biol Chem ; 286(42): 36820-9, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-21890625

RESUMO

Bone morphogenetic protein 10 (BMP10) belongs to the TGFß-superfamily. Previously, we had demonstrated that BMP10 is a key regulator for ventricular chamber formation, growth, and maturation. Ablation of BMP10 leads to hypoplastic ventricular wall formation, and elevated levels of BMP10 are associated with abnormal ventricular trabeculation/compaction and wall maturation. However, the molecular mechanism(s) by which BMP10 regulates ventricle wall growth and maturation is still largely unknown. In this study, we sought to identify the specific transcriptional network that is potentially mediated by BMP10. We analyzed and compared the gene expression profiles between α-myosin heavy chain (αMHC)-BMP10 transgenic hearts and nontransgenic littermate controls using Affymetrix mouse exon arrays. T-box 20 (Tbx20), a cardiac transcription factor, was significantly up-regulated in αMHC-BMP10 transgenic hearts, which was validated by quantitative RT-PCR and in situ hybridization. Ablation of BMP10 reduced Tbx20 expression specifically in the BMP10-expressing region of the developing ventricle. In vitro promoter analysis demonstrated that BMP10 was able to induce Tbx20 promoter activity through a conserved Smad binding site in the Tbx20 promoter proximal region. Furthermore, overexpression of Tbx20 in myocardium led to dilated cardiomyopathy that exhibited ventricular hypertrabeculation and an abnormal muscular septum, which phenocopied genetically modified mice with elevated BMP10 levels. Taken together, our findings demonstrate that the BMP10-Tbx20 signaling cascade is important for ventricular wall development and maturation.


Assuntos
Proteínas Morfogenéticas Ósseas/biossíntese , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Ventrículos do Coração/embriologia , Transdução de Sinais/fisiologia , Proteínas com Domínio T/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/genética , Cardiomiopatia Dilatada/embriologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Comunicação Interventricular/embriologia , Comunicação Interventricular/genética , Comunicação Interventricular/patologia , Ventrículos do Coração/patologia , Camundongos , Camundongos Transgênicos , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Elementos de Resposta/fisiologia , Proteínas com Domínio T/genética , Miosinas Ventriculares/genética , Miosinas Ventriculares/metabolismo , Septo Interventricular/embriologia , Septo Interventricular/patologia
19.
J Biol Chem ; 285(36): 27776-84, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20605780

RESUMO

Hypospadias is a common birth defect in humans, yet its etiology and pattern of onset are largely unknown. Recent studies have shown that male mice with targeted ablation of FK506-binding protein-52 (Fkbp52) develop hypospadias, most likely due to actions of Fkbp52 as a molecular co-chaperone of the androgen receptor (AR). Here, we further dissect the developmental and molecular mechanisms that underlie hypospadias in Fkbp52-deficient mice. Scanning electron microscopy revealed a defect in the elevation of prepucial swelling that led to the onset of the ventral penile cleft. Interestingly, expression of Fkbp52 was highest in the ventral aspect of the developing penis that undergoes fusion of the urethral epithelium. Although in situ hybridization and immunohistochemical analyses suggested that Fkbp52 mutants had a normal urethral epithelium signaling center and epithelial differentiation, a reduced apoptotic cell index at ventral epithelial cells at the site of fusion and a defect of genital mesenchymal cell migration were observed. Supplementation of gestating females with excess testosterone partially rescued the hypospadic phenotype in Fkbp52 mutant males, showing that loss of Fkbp52 desensitizes AR to hormonal activation. Direct measurement of AR activity was performed in mouse embryonic fibroblast cells treated with dihydrotestosterone or synthetic agonist R1881. Reduced AR activity at genes controlling sexual dimorphism and cell growth was found in Fkbp52-deficient mouse embryonic fibroblast cells. However, chromatin immunoprecipitation analysis revealed normal occupancy of AR at gene promoters, suggesting that Fkbp52 exerts downstream effects on the transactivation function of AR. Taken together, our data show Fkbp52 to be an important molecular regulator in the androgen-mediated pathway of urethra morphogenesis.


Assuntos
Receptores Androgênicos/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Ativação Transcricional , Uretra/crescimento & desenvolvimento , Uretra/metabolismo , Animais , Apoptose , Linhagem Celular , Movimento Celular , Proliferação de Células , Embrião de Mamíferos , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hipospadia/tratamento farmacológico , Hipospadia/genética , Hipospadia/metabolismo , Masculino , Mesoderma/citologia , Camundongos , Microscopia Eletrônica de Varredura , Mutação , Receptores Androgênicos/genética , Elementos de Resposta/genética , Proteínas de Ligação a Tacrolimo/deficiência , Proteínas de Ligação a Tacrolimo/genética , Testosterona/uso terapêutico , Uretra/citologia , Uretra/ultraestrutura
20.
Proc Natl Acad Sci U S A ; 105(51): 20534-9, 2008 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-19075248

RESUMO

Small-interfering RNAs (siRNAs) from natural cis-antisense pairs derived from the 3'-coding region of the barley (Hordeum vulgare) CesA6 cellulose synthase gene substantially increase in abundance during leaf elongation. Strand-specific RT-PCR confirmed the presence of an antisense transcript of HvCesA6 that extends > or = 1230 bp from the 3' end of the CesA-coding sequence. The increases in abundance of the CesA6 antisense transcript and the 21-nt and 24-nt siRNAs derived from the transcript are coincident with the down-regulation of primary wall CesAs, several Csl genes, and GT8 glycosyl transferase genes, and are correlated with the reduction in rates of cellulose and (1 --> 3),(1 --> 4)-beta-D-glucan synthesis. Virus induced gene silencing using unique target sequences derived from HvCesA genes attenuated expression not only of the HvCesA6 gene, but also of numerous nontarget Csls and the distantly related GT8 genes and reduced the incorporation of D-(14)C-Glc into cellulose and into mixed-linkage (1 --> 3),(1 --> 4)-beta-D-glucans of the developing leaves. Unique target sequences for CslF and CslH conversely silenced the same genes and lowered rates of cellulose and (1 --> 3),(1 --> 4)-beta-D-glucan synthesis. Our results indicate that the expression of individual members of the CesA/Csl superfamily and glycosyl transferases share common regulatory control points, and siRNAs from natural cis-antisense pairs derived from the CesA/Csl superfamily could function in this global regulation of cell-wall synthesis.


Assuntos
Parede Celular/metabolismo , Glucosiltransferases/genética , RNA Antissenso , RNA de Plantas , RNA Interferente Pequeno/fisiologia , Celulose/biossíntese , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glucanos/biossíntese , Hordeum/genética , Folhas de Planta/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA