Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(14): e2400868121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547066

RESUMO

Partial cystectomy procedures for urinary bladder-related dysfunction involve long recovery periods, during which urodynamic studies (UDS) intermittently assess lower urinary tract function. However, UDS are not patient-friendly, they exhibit user-to-user variability, and they amount to snapshots in time, limiting the ability to collect continuous, longitudinal data. These procedures also pose the risk of catheter-associated urinary tract infections, which can progress to ascending pyelonephritis due to prolonged lower tract manipulation in high-risk patients. Here, we introduce a fully bladder-implantable platform that allows for continuous, real-time measurements of changes in mechanical strain associated with bladder filling and emptying via wireless telemetry, including a wireless bioresorbable strain gauge validated in a benchtop partial cystectomy model. We demonstrate that this system can reproducibly measure real-time changes in a rodent model up to 30 d postimplantation with minimal foreign body response. Studies in a nonhuman primate partial cystectomy model demonstrate concordance of pressure measurements up to 8 wk compared with traditional UDS. These results suggest that our system can be used as a suitable alternative to UDS for long-term postoperative bladder recovery monitoring.


Assuntos
Bexiga Urinária , Infecções Urinárias , Animais , Humanos , Bexiga Urinária/cirurgia , Urodinâmica/fisiologia , Próteses e Implantes , Cistectomia
2.
Proc Natl Acad Sci U S A ; 121(22): e2404007121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38768347

RESUMO

Sensations of heat and touch produced by receptors in the skin are of essential importance for perceptions of the physical environment, with a particularly powerful role in interpersonal interactions. Advances in technologies for replicating these sensations in a programmable manner have the potential not only to enhance virtual/augmented reality environments but they also hold promise in medical applications for individuals with amputations or impaired sensory function. Engineering challenges are in achieving interfaces with precise spatial resolution, power-efficient operation, wide dynamic range, and fast temporal responses in both thermal and in physical modulation, with forms that can extend over large regions of the body. This paper introduces a wireless, skin-compatible interface for thermo-haptic modulation designed to address some of these challenges, with the ability to deliver programmable patterns of enhanced vibrational displacement and high-speed thermal stimulation. Experimental and computational investigations quantify the thermal and mechanical efficiency of a vertically stacked design layout in the thermo-haptic stimulators that also supports real-time, closed-loop control mechanisms. The platform is effective in conveying thermal and physical information through the skin, as demonstrated in the control of robotic prosthetics and in interactions with pressure/temperature-sensitive touch displays.


Assuntos
Tato , Realidade Virtual , Tecnologia sem Fio , Humanos , Tecnologia sem Fio/instrumentação , Tato/fisiologia , Pele , Robótica/instrumentação , Robótica/métodos
3.
Proc Natl Acad Sci U S A ; 120(6): e2217828120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36716364

RESUMO

Thermal sensations contribute to our ability to perceive and explore the physical world. Reproducing these sensations in a spatiotemporally programmable manner through wireless computer control could enhance virtual experiences beyond those supported by video, audio and, increasingly, haptic inputs. Flexible, lightweight and thin devices that deliver patterns of thermal stimulation across large areas of the skin at any location of the body are of great interest in this context. Applications range from those in gaming and remote socioemotional communications, to medical therapies and physical rehabilitation. Here, we present a set of ideas that form the foundations of a skin-integrated technology for power-efficient generation of thermal sensations across the skin, with real-time, closed-loop control. The systems exploit passive cooling mechanisms, actively switchable thermal barrier interfaces, thin resistive heaters and flexible electronics configured in a pixelated layout with wireless interfaces to portable devices, the internet and cloud data infrastructure. Systematic experimental studies and simulation results explore the essential mechanisms and guide the selection of optimized choices in design. Demonstration examples with human subjects feature active thermoregulation, virtual social interactions, and sensory expansion.


Assuntos
Pele , Realidade Virtual , Humanos , Eletrônica , Sensação Térmica , Comunicação
4.
Proc Natl Acad Sci U S A ; 120(9): e2219394120, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36802437

RESUMO

Vocal fatigue is a measurable form of performance fatigue resulting from overuse of the voice and is characterized by negative vocal adaptation. Vocal dose refers to cumulative exposure of the vocal fold tissue to vibration. Professionals with high vocal demands, such as singers and teachers, are especially prone to vocal fatigue. Failure to adjust habits can lead to compensatory lapses in vocal technique and an increased risk of vocal fold injury. Quantifying and recording vocal dose to inform individuals about potential overuse is an important step toward mitigating vocal fatigue. Previous work establishes vocal dosimetry methods, that is, processes to quantify vocal fold vibration dose but with bulky, wired devices that are not amenable to continuous use during natural daily activities; these previously reported systems also provide limited mechanisms for real-time user feedback. This study introduces a soft, wireless, skin-conformal technology that gently mounts on the upper chest to capture vibratory responses associated with vocalization in a manner that is immune to ambient noises. Pairing with a separate, wirelessly linked device supports haptic feedback to the user based on quantitative thresholds in vocal usage. A machine learning-based approach enables precise vocal dosimetry from the recorded data, to support personalized, real-time quantitation and feedback. These systems have strong potential to guide healthy behaviors in vocal use.


Assuntos
Canto , Distúrbios da Voz , Voz , Humanos , Retroalimentação , Distúrbios da Voz/etiologia , Voz/fisiologia , Prega Vocal/fisiologia
5.
Small ; 20(2): e2304555, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37649204

RESUMO

Toxic gases have surreptitiously influenced the health and environment of contemporary society with their odorless/colorless characteristics. As a result, a pressing need for reliable and portable gas-sensing devices has continuously increased. However, with their negligence to efficiently microstructure their bulky supportive layer on which the sensing and heating materials are located, previous semiconductor metal-oxide gas sensors have been unable to fully enhance their power efficiency, a critical factor in power-stringent portable devices. Herein, an ultrathin insulation layer with a unique serpentine architecture is proposed for the development of a power-efficient gas sensor, consuming only 2.3 mW with an operating temperature of 300 °C (≈6% of the leading commercial product). Utilizing a mechanically robust serpentine design, this work presents a fully suspended standalone device with a supportive layer thickness of only ≈50 nm. The developed gas sensor shows excellent mechanical durability, operating over 10 000 on/off cycles and ≈2 years of life expectancy under continuous operation. The gas sensor detected carbon monoxide concentrations from 30 to 1 ppm with an average response time of ≈15 s and distinguishable sensitivity to 1 ppm (ΔR/R0 = 5%). The mass-producible fabrication and heating efficiency presented here provide an exemplary platform for diverse power-efficient-related devices.

6.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34663725

RESUMO

Early identification of atypical infant movement behaviors consistent with underlying neuromotor pathologies can expedite timely enrollment in therapeutic interventions that exploit inherent neuroplasticity to promote recovery. Traditional neuromotor assessments rely on qualitative evaluations performed by specially trained personnel, mostly available in tertiary medical centers or specialized facilities. Such approaches are high in cost, require geographic proximity to advanced healthcare resources, and yield mostly qualitative insight. This paper introduces a simple, low-cost alternative in the form of a technology customized for quantitatively capturing continuous, full-body kinematics of infants during free living conditions at home or in clinical settings while simultaneously recording essential vital signs data. The system consists of a wireless network of small, flexible inertial sensors placed at strategic locations across the body and operated in a wide-bandwidth and time-synchronized fashion. The data serve as the basis for reconstructing three-dimensional motions in avatar form without the need for video recordings and associated privacy concerns, for remote visual assessments by experts. These quantitative measurements can also be presented in graphical format and analyzed with machine-learning techniques, with potential to automate and systematize traditional motor assessments. Clinical implementations with infants at low and at elevated risks for atypical neuromotor development illustrates application of this system in quantitative and semiquantitative assessments of patterns of gross motor skills, along with body temperature, heart rate, and respiratory rate, from long-term and follow-up measurements over a 3-mo period following birth. The engineering aspects are compatible for scaled deployment, with the potential to improve health outcomes for children worldwide via early, pragmatic detection methods.


Assuntos
Comportamento do Lactente/fisiologia , Monitorização Fisiológica/instrumentação , Movimento/fisiologia , Sinais Vitais/fisiologia , Tecnologia sem Fio/instrumentação , Viés , Criança , Desenho de Equipamento , Frequência Cardíaca , Humanos , Imageamento Tridimensional , Lactente , Miniaturização , Monitorização Fisiológica/estatística & dados numéricos , Taxa Respiratória , Pele , Gravação em Vídeo , Tecnologia sem Fio/estatística & dados numéricos
7.
Small ; 16(13): e1906845, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32072747

RESUMO

Air suspension and alignment are fundamental requirements to make the best use of nanowires' unique properties; however, satisfying both requirements is very challenging due to the mechanical instability of air-suspended nanowires. Here, a perfectly aligned air-suspended nanowire array called "nanolene" is demonstrated, which has a high mechanical stability owing to a C-channel-shaped cross-section of the nanowires. The excellent mechanical stability is provided through geometrical modeling and finite element method simulations. The C-channel cross-section can be realized by top-down fabrication procedures, resulting in reliable demonstrations of the nanolenes with various materials and geometric parameters. The fabrication process provides large-area uniformity; therefore, nanolene can be considered as a 2D planar platform for 1D nanowire arrays. Thanks to the high mechanical stability of the proposed nanolene, perfectly aligned air-suspended nanowire arrays with an unprecedented length of 1 mm (aspect ratio ≈5100) are demonstrated. Since the nanolene can be used in an energy-efficient nanoheater, two energy-stringent sensors, namely, an air-flow sensor and a carbon monoxide gas sensor, are demonstrated. In particular, the gas sensor achieves sub-10 mW operations, which is a requirement for application in mobile phones. The proposed nanolene will pave the way to accelerate nanowire research and industrialization by providing reliable, high-performance nanowire devices.

8.
ACS Sens ; 9(4): 1896-1905, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38626402

RESUMO

With the escalating global awareness of air quality management, the need for continuous and reliable monitoring of toxic gases by using low-power operating systems has become increasingly important. One of which, semiconductor metal oxide gas sensors have received great attention due to their high/fast response and simple working mechanism. More specifically, self-heating metal oxide gas sensors, wherein direct thermal activation in the sensing material, have been sought for their low power-consuming characteristics. However, previous works have neglected to address the temperature distribution within the sensing material, resulting in inefficient gas response and prolonged response/recovery times, particularly due to the low-temperature regions. Here, we present a unique metal/metal oxide/metal (MMOM) nanowire architecture that conductively confines heat to the sensing material, achieving high uniformity in the temperature distribution. The proposed structure enables uniform thermal activation within the sensing material, allowing the sensor to efficiently react with the toxic gas. As a result, the proposed MMOM gas sensor showed significantly enhanced gas response (from 6.7 to 20.1% at 30 ppm), response time (from 195 to 17 s at 30 ppm), and limit of detection (∼1 ppm) when compared to those of conventional single-material structures upon exposure to carbon monoxide. Furthermore, the proposed work demonstrated low power consumption (2.36 mW) and high thermal durability (1500 on/off cycles), demonstrating its potential for practical applications in reliable and low-power operating gas sensor systems. These results propose a new paradigm for power-efficient and robust self-heating metal oxide gas sensors with potential implications for other fields requiring thermal engineering.


Assuntos
Gases , Nanofios , Óxidos , Nanofios/química , Gases/química , Gases/análise , Óxidos/química , Metais/química
9.
Mater Today Bio ; 18: 100541, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36647537

RESUMO

Bioresorbable implantable medical devices can be employed in versatile clinical scenarios that burden patients with complications and surgical removal of conventional devices. However, a shortage of suitable electricalinterconnection materials limits the development of bioresorbable electronic systems. Therefore, this study highlights a highly conductive, naturally resorbable paste exhibiting enhanced electrical conductivity and mechanical stability that can solve the existing problems of bioresorbable interconnections. Multifaceted experiments on electrical and physical properties were used to optimize the composition of pastes containing beeswax, submicron tungstenparticles, and glycofurol. These pastes embody isotropic conductive paths for three-dimensional interconnects and function as antennas, sensors, and contact pads for bioresorbable electronic devices. The degradation behavior in aqueous solutions was used to assess its stability and ability to retain electrical conductance (∼7 â€‹kS/m) and structural form over the requisite dissolution period. In vitro and in vivo biocompatibility tests clarified the safety of the paste as an implantable material.

10.
ACS Nano ; 17(23): 23649-23658, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38039345

RESUMO

The high explosiveness of hydrogen gas in the air necessitates prompt detection in settings where hydrogen is used. For this reason, hydrogen sensors are required to offer rapid detection and possess superior sensing characteristics in terms of measurement range, linearity, selectivity, lifetime, and environment insensitivity according to the publicized protocol. However, previous approaches have only partially achieved the standardized requirements and have been limited in their capability to develop reliable materials for spatially accessible systems. Here, an electrical hydrogen sensor with an ultrafast response (∼0.6 s) satisfying all demands for hydrogen detection is demonstrated. Tailoring structural engineering based on the reaction kinetics of hydrogen and palladium, an optimized heating architecture that thermally activates fully suspended palladium (Pd) nanowires at a uniform temperature is designed. The developed Pd nanostructure, at a designated temperature distribution, rapidly reacts with hydrogen, enabling a hysteresis-free response from 0.1% to 10% and durable characteristics in mechanical shock and repetitive operation (>10,000 cycles). Moreover, the device selectively detects hydrogen without performance degradation in humid or carbon-based interfering gas circumstances. Finally, to verify spatial accessibility, the wireless hydrogen detection system has been demonstrated, detecting and reporting hydrogen leakage in real-time within just 1 s.

11.
Biosens Bioelectron ; 237: 115545, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37517336

RESUMO

Temperature is the most commonly collected vital sign in all of clinical medicine; it plays a critical role in care decisions related to topics ranging from infection to inflammation, sleep, and fertility. Most assessments of body temperature occur at isolated anatomical locations (e.g. axilla, rectum, temporal artery, or oral cavity). Even this relatively primitive mode for monitoring can be challenging with vulnerable patient populations due to physical encumbrances and artifacts associated with the sizes, weights, shapes and mechanical properties of the sensors and, for continuous monitoring, their hard-wired interfaces to data collection units. Here, we introduce a simple, miniaturized, lightweight sensor as a wireless alternative, designed to address demanding applications such as those related to the care of neonates in high ambient humidity environments with radiant heating found in incubators in intensive care units. Such devices can be deployed onto specific anatomical locations of premature infants for homeostatic assessments. The estimated core body temperature aligns, to within 0.05 °C, with clinical grade, wired sensors, consistent with regulatory medical device requirements. Time-synchronized, multi-device operation across multiple body locations supports continuous, full-body measurements of spatio-temporal variations in temperature and additional modes of determining tissue health status in the context of sepsis detection and various environmental exposures. In addition to thermal sensing, these same devices support measurements of a range of other essential vital signs derived from thermo-mechanical coupling to the skin, for applications ranging from neonatal and infant care to sleep medicine and even pulmonary medicine.

12.
Nat Med ; 29(12): 3137-3148, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37973946

RESUMO

The human body generates various forms of subtle, broadband acousto-mechanical signals that contain information on cardiorespiratory and gastrointestinal health with potential application for continuous physiological monitoring. Existing device options, ranging from digital stethoscopes to inertial measurement units, offer useful capabilities but have disadvantages such as restricted measurement locations that prevent continuous, longitudinal tracking and that constrain their use to controlled environments. Here we present a wireless, broadband acousto-mechanical sensing network that circumvents these limitations and provides information on processes including slow movements within the body, digestive activity, respiratory sounds and cardiac cycles, all with clinical grade accuracy and independent of artifacts from ambient sounds. This system can also perform spatiotemporal mapping of the dynamics of gastrointestinal processes and airflow into and out of the lungs. To demonstrate the capabilities of this system we used it to monitor constrained respiratory airflow and intestinal motility in neonates in the neonatal intensive care unit (n = 15), and to assess regional lung function in patients undergoing thoracic surgery (n = 55). This broadband acousto-mechanical sensing system holds the potential to help mitigate cardiorespiratory instability and manage disease progression in patients through continuous monitoring of physiological signals, in both the clinical and nonclinical setting.


Assuntos
Unidades de Terapia Intensiva Neonatal , Recém-Nascido , Humanos , Monitorização Fisiológica
13.
ACS Nano ; 16(8): 11957-11967, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35621510

RESUMO

Palladium (Pd) has been drawing increasing attention as a hydrogen (H2) detecting material due to its highly selective sensitivity to H2. However, at H2 concentrations above 2%, Pd undergoes an inevitable phase transition, causing undesirable electrical and mechanical alterations. In particular, nonlinear gas response (ΔR/R0) that accompanies phase transition has been a great bottleneck for detecting H2 in high concentrations, which is especially important as there is a risk of explosion over 4% H2. Here, we propose a phase-transition-inhibited Pd nanowire H2 sensor that can detect up to 4% H2 with high linearity and high sensitivity. Based on the calculation of the change in free energy, we designed Pd nanowires that are highly adhered to the substrate to withstand the stress that leads to phase transition. We theoretically optimized the Pd nanowire dimensions using a finite element method simulation and then experimentally fabricated the proposed sensor by exploiting a developed nanofabrication method. The proposed sensor exhibits a high sensing linearity (98.9%) with high and stable sensitivity (ΔR/R0/[H2] = 875%·bar-1) over a full range of H2 concentrations (0.1-4%). Using the fabricated Pd sensors, we have successfully demonstrated a wireless sensor module that can detect H2 with high linearity, notifying real-time H2 leakage through remote communication. Overall, our work suggests a nanostructuring strategy for detecting H2 with a phase-transition-inhibited pure Pd H2 sensor with rigorous scientific exploration.

14.
NPJ Digit Med ; 5(1): 147, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36123384

RESUMO

Swallowing is a complex neuromuscular activity regulated by the autonomic nervous system. Millions of adults suffer from dysphagia (impaired or difficulty swallowing), including patients with neurological disorders, head and neck cancer, gastrointestinal diseases, and respiratory disorders. Therapeutic treatments for dysphagia include interventions by speech-language pathologists designed to improve the physiology of the swallowing mechanism by training patients to initiate swallows with sufficient frequency and during the expiratory phase of the breathing cycle. These therapeutic treatments require bulky, expensive equipment to synchronously record swallows and respirations, confined to use in clinical settings. This paper introduces a wireless, wearable technology that enables continuous, mechanoacoustic tracking of respiratory activities and swallows through movements and vibratory processes monitored at the skin surface. Validation studies in healthy adults (n = 67) and patients with dysphagia (n = 4) establish measurement equivalency to existing clinical standard equipment. Additional studies using a differential mode of operation reveal similar performance even during routine daily activities and vigorous exercise. A graphical user interface with real-time data analytics and a separate, optional wireless module support both visual and haptic forms of feedback to facilitate the treatment of patients with dysphagia.

15.
Sci Adv ; 8(51): eade3201, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36563148

RESUMO

Recently reported winged microelectronic systems offer passive flight mechanisms as a dispersal strategy for purposes in environmental monitoring, population surveillance, pathogen tracking, and other applications. Initial studies indicate potential for technologies of this type, but advances in structural and responsive materials and in aerodynamically optimized geometries are necessary to improve the functionality and expand the modes of operation. Here, we introduce environmentally degradable materials as the basis of 3D fliers that allow remote, colorimetric assessments of multiple environmental parameters-pH, heavy metal concentrations, and ultraviolet exposure, along with humidity levels and temperature. Experimental and theoretical investigations of the aerodynamics of these systems reveal design considerations that include not only the geometries of the structures but also their mass distributions across a range of bioinspired designs. Preliminary field studies that rely on drones for deployment and for remote colorimetric analysis by machine learning interpretation of digital images illustrate scenarios for practical use.

16.
Science ; 376(6596): 1006-1012, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35617386

RESUMO

Temporary postoperative cardiac pacing requires devices with percutaneous leads and external wired power and control systems. This hardware introduces risks for infection, limitations on patient mobility, and requirements for surgical extraction procedures. Bioresorbable pacemakers mitigate some of these disadvantages, but they demand pairing with external, wired systems and secondary mechanisms for control. We present a transient closed-loop system that combines a time-synchronized, wireless network of skin-integrated devices with an advanced bioresorbable pacemaker to control cardiac rhythms, track cardiopulmonary status, provide multihaptic feedback, and enable transient operation with minimal patient burden. The result provides a range of autonomous, rate-adaptive cardiac pacing capabilities, as demonstrated in rat, canine, and human heart studies. This work establishes an engineering framework for closed-loop temporary electrotherapy using wirelessly linked, body-integrated bioelectronic devices.


Assuntos
Implantes Absorvíveis , Estimulação Cardíaca Artificial , Marca-Passo Artificial , Cuidados Pós-Operatórios , Tecnologia sem Fio , Animais , Cães , Frequência Cardíaca , Humanos , Cuidados Pós-Operatórios/instrumentação , Ratos
17.
Adv Mater ; 32(35): e1907082, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32253800

RESUMO

Recently, geometrically structured nanomaterials have received great attention due to their unique physical and chemical properties, which originate from the geometric variation in such materials. Indeed, the use of various geometrically structured nanomaterials has been actively reported in enhanced-performance devices in a wide range of applications. Recent significant progress in the development of geometrically structured nanomaterials and associated devices is summarized. First, a brief introduction of advanced nanofabrication methods that enable the fabrication of various geometrically structured nanomaterials is given, and then the performance enhancements achieved in devices utilizing these nanomaterials, namely, i) physical and gas nanosensors, ii) nanoelectromechanical devices, and iii) nanosieves are described. For the device applications, a systematic summary of their structures, working mechanisms, fabrication methods, and output performance is provided. Particular focus is given to how device performance can be enhanced through the geometric structures of the nanomaterials. Finally, perspectives on the development of novel nanomaterial structures and associated devices are presented.

18.
ACS Nano ; 14(12): 16813-16822, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33263256

RESUMO

This study proposes a reliable and self-powered hydrogen (H2) gas sensor composed of a chemo-mechanically operating nanostructured film and photovoltaic cell. Specifically, the nanostructured film has a configuration in which an asymmetrically coated palladium (Pd) film is coated on a periodic polyurethane acrylate (PUA) nanograting. The asymmetric Pd nanostructures, optimized by a finite element method simulation, swell upon reacting with H2 and thereby bend the PUA nanograting, changing the amount of transmitted light and the current output of the photovoltaic cell. Since the degree of warping is determined by the concentration of H2 gas, a wide concentration range of H2 (0.1-4.0%) can be detected by measuring the self-generated electrical current of the photovoltaic cell without external power. The normalized output current changes are ∼1.5%, ∼2.8%, ∼3.5%, ∼5.0%, ∼21.5%, and 25.3% when the concentrations of H2 gas are 0.1%, 0.5%, 1.0%, 1.6%, 2%, and 4%, respectively. Moreover, because Pd is highly chemically reactive to H2 and also because there is no electrical current applied through Pd, the proposed sensor can avoid device failure due to the breakage of the Pd sensing material, resulting in high reliability, and can show high selectivity against various gases such as carbon monoxide, hydrogen sulfide, nitrogen dioxide, and water vapor. Finally, using only ambient visible light, the sensor was modularized to produce an alarm in the presence of H2 gas, verifying a potential always-on H2 gas monitoring application.

20.
Clin Exp Vaccine Res ; 8(2): 132-135, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31406695

RESUMO

Since 2000, large amounts of rabies bait vaccine have been distributed in two provinces where raccoon dog-mediated rabies has occurred. A total of 146 raccoon dogs were caught in Gangwon and Gyeonggi Provinces from January 2017 to June 2018, and raccoon dog blood samples were collected. Of the 146 raccoon dogs, 13.7% (20/146) had rabies antibodies. In Gyeonggi and Gangwon provinces, the rate of rabies antibody was 8.5% (5/59) and 17.2% (15/87), respectively. Considering these results, it would be desirable to improve the distribution method or use a new bait vaccine to prevent animal rabies in South Korea.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA