Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 23(3): 316-329, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-37816504

RESUMO

Expression of the serine/threonine kinase never in mitosis gene A (NIMA)-related kinase 2 (NEK2) is essential for entry into mitosis via its role in facilitating centrosome separation. Its overactivity can lead to tumorigenesis and drug resistance through the activation of several oncogenic pathways, including AKT. Although the cancer-enabling activities of NEK2 are documented in many malignancies, including correlations with poor survival in myeloma, breast, and non-small cell lung cancer, little is known about the role of NEK2 in lymphoma. Here, in tumors from patients with diffuse large B-cell lymphoma (DLBCL), the most common, aggressive non-Hodgkin lymphoma, we found a high abundance of NEK2 mRNA and protein associated with an inferior overall survival. Using our recently developed NEK2 inhibitor, NBI-961, we discovered that DLBCL cell lines and patient-derived cells exhibit a dependency on NEK2 for their viability. This compromised cell fitness was directly attributable to efficient NEK2 inhibition and proteasomal degradation by NBI-961. In a subset of particularly sensitive DLBCL cells, NBI-961 induced G2/mitosis arrest and apoptosis. In contrast, an existing indirect NEK2 inhibitor, INH154, did not prevent NEK2 autophosphorylation, induce NEK2 proteasomal degradation, or affect cell viability. Global proteomics and phospho-proteomics revealed that NEK2 orchestrates cell-cycle and apoptotic pathways through regulation of both known and new signaling molecules. We show the loss of NEK2-sensitized DLBCL to the chemotherapy agents, doxorubicin and vincristine, and effectively suppressed tumor growth in mice. These studies establish the oncogenic activity of NEK2 in DLBCL and set the foundation for development of anti-NEK2 therapeutic strategies in this frequently refractory and relapse-prone cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Linfoma Difuso de Grandes Células B , Linfoma , Humanos , Animais , Camundongos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Relacionadas a NIMA/genética , Linhagem Celular Tumoral , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética
2.
Haematologica ; 98(4): 560-7, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23403324

RESUMO

Mutations of VHL (a negative regulator of hypoxia-inducible factors) have position-dependent distinct cancer phenotypes. Only two known inherited homozygous VHL mutations exist and they cause polycythemia: Chuvash R200W and Croatian H191D. We report a second polycythemic Croatian H191D homozygote distantly related to the first propositus. Three generations of both families were genotyped for analysis of shared ancestry. Biochemical and molecular tests were performed to better define their phenotypes, with an emphasis on a comparison with Chuvash polycythemia. The VHL H191D mutation did not segregate in the family defined by the known common ancestors of the two subjects, suggesting a high prevalence in Croatians, but haplotype analysis indicated an undocumented common ancestor ∼six generations ago as the founder of this mutation. We show that erythropoietin levels in homozygous VHL H191D individuals are higher than in VHL R200W patients of similar ages, and their native erythroid progenitors, unlike Chuvash R200W, are not hypersensitive to erythropoietin. This observation contrasts with a report suggesting that polycythemia in VHL R200W and H191D homozygotes is due to the loss of JAK2 regulation from VHL R200W and H191D binding to SOCS1. In conclusion, our studies further define the hematologic phenotype of VHL H191D and provide additional evidence for phenotypic heterogeneity associated with the positional effects of VHL mutations.


Assuntos
Mutação de Sentido Incorreto , Policitemia/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Sequência de Bases , Proliferação de Células/efeitos dos fármacos , Croácia , Análise Mutacional de DNA , Relação Dose-Resposta a Droga , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/efeitos dos fármacos , Células Precursoras Eritroides/metabolismo , Eritropoetina/sangue , Eritropoetina/farmacologia , Saúde da Família , Feminino , Expressão Gênica/efeitos dos fármacos , Genótipo , Granulócitos/citologia , Granulócitos/efeitos dos fármacos , Granulócitos/metabolismo , Haplótipos , Homozigoto , Humanos , Masculino , Linhagem , Fenótipo , Policitemia/sangue , Policitemia/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Federação Russa
3.
Cancers (Basel) ; 15(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37173940

RESUMO

Multiple myeloma (MM) is the second most common hematological malignancy. It is a clonal B-cell disorder characterized by the proliferation of malignant plasma cells in the bone marrow, the presence of monoclonal serum immunoglobulin, and osteolytic lesions. An increasing amount of evidence shows that the interactions of MM cells and the bone microenvironment play a significant role, suggesting that these interactions may be good targets for therapy. The osteopontin-derived collagen-binding motif-bearing peptide NIPEP-OSS stimulates biomineralization and enhances bone remodeling dynamics. Due to its unique targeted osteogenic activity with a broad safety margin, we evaluated the potential of NIPEP-OSS for anti-myeloma activity using MM bone disease (MMBD) animal models. In a 5TGM1-engrafted NSG model, the survival rates of the control and treated groups were significantly different (p = 0.0014), with median survival times of 45 and 57 days, respectively. The bioluminescence analyses showed that myeloma slowly developed in the treated mice compared to the control mice in both models. NIPEP-OSS enhanced bone formation by increasing biomineralization in the bone. We also tested NIPEP-OSS in a well-established 5TGM1-engrafted C57BL/KaLwRij model. Similar to the previous model, the median survival times of the control and treated groups were significantly different (p = 0.0057), with 46 and 63 days, respectively. In comparison with the control, an increase in p1NP was found in the treated mice. We concluded that NIPEP-OSS delays mouse myeloma progression via bone formation in MMBD mouse models.

4.
Materials (Basel) ; 15(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36556744

RESUMO

Microneedles are highly sought after for medicinal and cosmetic applications. However, the current manufacturing process for microneedles remains complicated, hindering its applicability to a broader variety of applications. As diffraction lithography has been recently reported as a simple method for fabricating solid microneedles, this paper presents the experimental validation of the use of ultraviolet light diffraction to control the liquid-to-solid transition of photosensitive resin to define the microneedle shape. The shapes of the resultant microneedles were investigated utilizing the primary experimental parameters including the photopattern size, ultraviolet light intensity, and the exposure time. Our fabrication results indicated that the fabricated microneedles became taller and larger in general when the experimental parameters were increased. Additionally, our investigation revealed four unique crosslinked resin morphologies during the first growth of the microneedle: microlens, first harmonic, first bell-tip, and second harmonic shapes. Additionally, by tilting the light exposure direction, a novel inclined microneedle array was fabricated for the first time. The fabricated microneedles were characterized with skin insertion and force-displacement tests. This experimental study enables the shapes and mechanical properties of the microneedles to be predicted in advance for mass production and wide practical use for biomedical or cosmetic applications.

5.
Am J Physiol Cell Physiol ; 300(6): C1215-22, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21368293

RESUMO

Our understanding of organismal responses to hypoxia has stemmed from studies of erythropoietin regulation by hypoxia that led to the discovery of the master regulator of the hypoxic response, i.e., hypoxia-inducible factor (HIF). This is a transcription factor that is now known to induce the expression of a battery of genes in response to hypoxia. HIF-1 and HIF-2 regulate many genes that are involved in erythropoiesis and iron metabolism, which are essential for tissue oxygen delivery.


Assuntos
Hipóxia Celular/fisiologia , Hematopoese/fisiologia , Hipóxia/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Encéfalo/metabolismo , Linhagem da Célula , Eritropoetina/metabolismo , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Ferro/metabolismo , Rim/metabolismo , Fígado/metabolismo , Oxigênio/metabolismo , Células-Tronco Pluripotentes/fisiologia , Isoformas de Proteínas/metabolismo , Síndrome
6.
Haematologica ; 96(5): 775-8, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21273266

RESUMO

TET2 mutations are found in polycythemia vera and it was initially reported that there is a greater TET2 mutational burden than JAK2(V617F) in polycythemia vera stem cells and that TET2 mutations precede JAK2(V617F). We quantified the proportion of TET2, JAK2(V617F) mutations and X-chromosome allelic usage in polycythemia vera cells, BFU-Es and in vitro expanded erythroid progenitors and found clonal reticulocytes, granulocytes, platelets and CD34(+) cells. We found that TET2 mutations may also follow rather than precede JAK2(V617F) as recently reported by others. Only a fraction of clonal early hematopoietic precursors and largely polyclonal T cells carry the TET2 mutation. We showed that in vitro the concomitant presence of JAK2(V617F) and TET2 mutations favors clonal polycythemia vera erythroid progenitors in contrast with non-TET2 mutated progenitors. We conclude that loss-of-function TET2 mutations are not the polycythemia vera initiating events and that the acquisition of TET2 somatic mutations may increase the aggressivity of the polycythemia vera clone.


Assuntos
Proteínas de Ligação a DNA/genética , Janus Quinase 2/genética , Mutação , Policitemia Vera/genética , Proteínas Proto-Oncogênicas/genética , Substituição de Aminoácidos , Plaquetas/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cromossomos Humanos X/genética , Células Clonais/metabolismo , Dioxigenases , Células Precursoras Eritroides/metabolismo , Eritropoetina/farmacologia , Feminino , Citometria de Fluxo , Granulócitos/metabolismo , Sistema Hematopoético/metabolismo , Humanos , Reticulócitos/metabolismo , Linfócitos T/metabolismo , Fatores de Tempo
7.
Cancers (Basel) ; 13(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34503090

RESUMO

Multiple myeloma (MM) is a plasma cell malignancy that causes an accumulation of terminally differentiated monoclonal plasma cells in the bone marrow, accompanied by multiple myeloma bone disease (MMBD). MM animal models have been developed and enable to interrogate the mechanism of MM tumorigenesis. However, these models demonstrate little or no evidence of MMBD. We try to establish the MMBD model with severe bone lesions and easily accessible MM progression. 1 × 106 luciferase-expressing 5TGM1 cells were injected into 8-12 week-old NOD SCID gamma mouse (NSG) and C57BL/KaLwRij mouse via the tail vein. Myeloma progression was assessed weekly via in vivo bioluminescence (BL) imaging using IVIS-200. The spine and femur/tibia were extracted and scanned by the micro-computer tomography for bone histo-morphometric analyses at the postmortem. The median survivals were 56 days in NSG while 44.5 days in C57BL/KaLwRij agreed with the BL imaging results. Histomorphic and DEXA analyses demonstrated that NSG mice have severe bone resorption that occurred at the lumbar spine but no significance at the femur compared to C57BL/KaLwRij mice. Based on these, we conclude that the systemic 5TGM1 injected NSG mouse slowly progresses myeloma and develops more severe MMBD than the C57BL/KaLwRij model.

8.
Front Genet ; 12: 640954, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163520

RESUMO

Multiple myeloma (MM) is a clonal B-cell disorder characterized by the proliferation of malignant plasma cells (PCs) in the bone marrow, the presence of monoclonal serum immunoglobulin, and osteolytic lesions. It is the second most common hematological malignancy and considered an incurable disease despite significant treatment improvements. MM bone disease (MMBD) is defined as the presence of one or more osteolytic bone lesions or diffused osteoporosis with compression fracture attributable to the underlying clonal PC disorder. MMBD causes severe morbidity and increases mortality. Cumulative evidence shows that the interaction of MM cells and bone microenvironment plays a significant role in MM progression, suggesting that these interactions may be good targets for therapy. MM animal models have been developed and studied in various aspects of MM tumorigenesis. In particular, MMBD has been studied in various models, and each model has unique features. As the general features of MM animal models have been reviewed elsewhere, the current review will focus on the features of MMBD animal models.

9.
Blood Cells Mol Dis ; 43(1): 81-7, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19264517

RESUMO

Polycythemia vera (PV) is an acquired myeloproliferative clonal disorder, characterized by augmented erythropoiesis. To better define PV pathogenesis, we performed an in vitro erythroid expansion from peripheral blood mononuclear cells of controls and PV patients and evaluated the cells for proliferation, apoptosis, erythroid differentiation, and morphology at the defined time points. PV erythroid progenitors exhibited increased proliferation at days 9-14 and accelerated maturation at days 7-14, with a larger S-phase population (40%) than controls (20%) at day 11; however, the proportion of apoptotic cells was comparable to controls. Previously, we have identified PV-specific dysregulation of several microRNAs (i.e. miR-150, 451, 222, 155, 378). We had analyzed expression profiles of selected target genes of these microRNAs based on in silico prediction and their known function pertinent to the observed PV-specific erythropoiesis differences. p27, cMYB and EPOR showed differential expression in PV erythroid progenitors at the specific stages of erythroid differentiation. In this study, we identified accelerated maturation and hyper-proliferation at early stages of PV erythropoiesis. We speculate that aberrant expression of p27, c-MYB, and EPOR may contribute to these abnormal features in PV erythropoiesis.


Assuntos
Células Eritroides/patologia , Eritropoese , Policitemia Vera/genética , Policitemia Vera/fisiopatologia , Ciclo Celular , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p27/genética , Células Eritroides/citologia , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/patologia , Regulação da Expressão Gênica , Genes myb/genética , Humanos , MicroRNAs/genética , Receptores da Eritropoetina/genética
10.
Mol Cell Biochem ; 328(1-2): 177-82, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19322640

RESUMO

Prion protein (PrP) interacts with some kringle domain-containing proteins. Kringle domains serve as binding domains in the interaction with PrP. The structural conservation among kringle domains leads to the hypothesis that any protein containing these domains can interact with PrP and be involved in prion pathogenesis. Because prion pathogenesis occurs in the brain, kringle domain-containing proteins should be available in the same tissue if they are relevant to prion pathogenesis. However, gene expression of these proteins in brains infected by prions has not been examined. Here, we showed that plasminogen (plg), urokinase type plasminogen activator (upa), tissue type plasminogen activator (tpa), prothrombin (prothr), and hepatocyte growth factor (hgf) genes were expressed in murine brains and neuroblastoma cells. The changes in upa, prothr, and hgf gene expression correlated with prion disease, but those in plg and tpa gene expression did not. Our data suggest association of gene expression of kringle domain-containing proteins in brains with prion disease.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica , Kringles , Neuroblastoma/metabolismo , Doenças Priônicas/genética , Príons/metabolismo , Proteínas/genética , Animais , Sítios de Ligação , Fator de Crescimento de Hepatócito/genética , Camundongos , Plasminogênio/genética , Ligação Proteica/genética , Protrombina/genética , Ativador de Plasminogênio Tecidual/genética , Ativador de Plasminogênio Tipo Uroquinase/genética
11.
Blood Cells Mol Dis ; 40(3): 381-7, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18077194

RESUMO

Available data suggest that gene regulation by the Gata-1 Hematopoietic Regulatory Domain (Gata-1-HRD) is limited to cells derived from the erythroid lineage. This characteristic makes Gata-1-HRD a candidate for control of cre expression in conditional knock-in and knock-out models in which erythroid-specific gene expression is essential. To characterize the specificity of Gata-1 HRD regulation of cre, transgenic mice expressing improved cre recombinase (iCre) under the control of Gata-1-HRD were generated. The founders were crossbred with mice that have an inactive loxP-containing beta-galactosidase gene that can be rescued by the cre recombinase. The beta-galactosidase activity was detected in the marrow of this crossbred mouse, but no activity was observed in other organs. To identify the cre expressing cells in marrow, double-immunostaining of marrow sections with anti-beta-galactosidase, and antibodies against various hematopoietic lineage markers or erythropoietin receptor (epor) was performed. The epor positive cells in marrow expressed beta-galactosidase, but megakaryocytic precursors and nonerythroid epor-positive cells in brain and spleen did not. We conclude that when cre is under control of Gata-1-HRD, its expression/function is limited to erythroid progenitors. The knock-in and knock-out models utilizing Gata-1-HRD-iCre, can be explored for the studies of erythroid-specific gene expression.


Assuntos
Células da Medula Óssea/metabolismo , Células Precursoras Eritroides/metabolismo , Fator de Transcrição GATA1/metabolismo , Integrases/metabolismo , Baço/metabolismo , Animais , Antígenos de Grupos Sanguíneos/metabolismo , Células da Medula Óssea/citologia , Células Precursoras Eritroides/citologia , Fator de Transcrição GATA1/genética , Expressão Gênica , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Regiões Promotoras Genéticas , Receptores da Eritropoetina/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Baço/citologia , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
12.
Exp Hematol ; 35(11): 1657-67, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17976518

RESUMO

OBJECTIVE: Polycythemia vera (PV) is a myeloproliferative disorder, arising from the acquired mutation(s) of a hematopoietic stem cell. The JAK2 V617F somatic mutation is found in most PV patients; however, it is not the disease-initiating mutation. Because microRNAs (miRNAs) play a regulatory role in hematopoiesis, we studied miRNA expressions in PV and normal erythropoiesis. METHODS: Peripheral blood mononuclear cells were cultured in a three-phase liquid system resulting in synchronized expansion of erythroid progenitors. Using gene-expression profiling by CombiMatrix MicroRNArray, we searched for PV-specific changes at days 1, 14, and 21. Twelve miRNA candidates were then reevaluated by quantitative real-time polymerase chain reaction in a larger number of samples obtained from progenitors at the same stage of differentiation. RESULTS: A significant difference in miR-150 expression was found in PV. In normal erythropoiesis, three expression patterns of miRNAs were observed: progressive downregulation of miR-150, miR-155, miR-221, miR-222; upregulation of miR-451, miR-16 at late stages of erythropoiesis; and biphasic regulation of miR-339, miR-378. The miR-451 appears to be erythroid-specific. CONCLUSIONS: We identified the miRNAs with regulated expression in erythropoiesis; one appeared to be PV-specific. Their miRNA expression levels define early, intermediate, and late stages of erythroid differentiation. The validity of our findings was confirmed in nonexpanded peripheral blood cells.


Assuntos
Eritropoese/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Policitemia Vera/genética , Estudos de Casos e Controles , Diferenciação Celular/genética , Células Cultivadas , Células Precursoras Eritroides , Perfilação da Expressão Gênica , Humanos , Leucócitos Mononucleares , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Tempo
13.
Exp Hematol ; 35(6): 931-8, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17533047

RESUMO

OBJECTIVE: An activating mutation of Janus kinase 2 (JAK2) in majority of polycythemia vera (PV) and other myeloproliferative disorders was reported. As imatinib inhibits several tyrosine kinases, we studied its effect in PV. PATIENTS AND METHODS: We employed FDCP reporter cells expressing wild-type JAK2 and mutant JAK2(V617F) to study the efficacy of imatinib by cell proliferation assay and its effect on several cell-signaling events. Imatinib's efficacy was also examined on in vitro expanded native human erythroid progenitors. In addition, analysis of the percent JAK2 T-allele and phospho-signal transducer and activator of transcription-5 (STAT5) in granulocytes of PV patients following imatinib therapy was assessed. RESULTS: Imatinib showed a specific time- and dose-dependent growth inhibitory effect on FDCP cells expressing JAK2(V617F), wherein we observed imatinib's inactivation of JAK2, STAT5 and cKIT proteins. In vitro expanded human PV erythroid progenitors were more sensitive to imatinib than normal erythroid progenitors and FDCP cells expressing JAK2(V617F), with growth inhibition at concentrations attainable in vivo. In an ongoing clinical study, a PV patient showed strong correlation between the percent JAK2 T-allele and his responsiveness to imatinib therapy. CONCLUSION: Our data elucidate the therapeutic benefit of imatinib seen in some PV patients. Our data suggest that JAK2/STAT5 and cKIT activation may be integrated. To our knowledge, this is the first report demonstrating imatinib's effect on PV erythroid progenitors. These studies underscore the limitation of experiments using cell lines expressing the gene of interest.


Assuntos
Células Precursoras Eritroides/metabolismo , Janus Quinase 2/antagonistas & inibidores , Piperazinas/farmacologia , Policitemia Vera/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Alelos , Benzamidas , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Células Precursoras Eritroides/patologia , Granulócitos/metabolismo , Granulócitos/patologia , Humanos , Mesilato de Imatinib , Janus Quinase 2/genética , Mutação de Sentido Incorreto , Piperazinas/uso terapêutico , Policitemia Vera/tratamento farmacológico , Policitemia Vera/genética , Policitemia Vera/patologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Pirimidinas/uso terapêutico , Fator de Transcrição STAT5/metabolismo
14.
J Bone Oncol ; 12: 19-22, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29556454

RESUMO

The 5TGM1 multiple myeloma transplanted C57BL6/KaLwRij model recapitulates many disease features including monoclonal paraprotein production as well as the development of osteolytic bone lesions. Since a significant association between serum parathyroid hormone PTH variations, bone anabolism and myeloma progression in patients receiving proteasome inhibitors exists, this study investigated the effect of the PTH axis on murine myeloma development in vivo. C57BL6/KaLwRij myeloma-bearing mice underwent thyroparathyroidectomy (TPTX) before and after 5TGM1 cell transplantation. TPTX significantly and permanently inhibited 5TGM1 myeloma cell engraftment and prevented multiple myeloma growth and progression. These data support the hypothesis that the PTH axis is an important mediator of myeloma bone disease.

15.
Endocrinology ; 159(4): 1561-1569, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29381784

RESUMO

We previously reported a substantial correlation between serum parathyroid hormone (PTH) levels and the myeloma response to proteasome inhibition that suggests a crucial role for the PTH receptor 1 system in the control of myeloma tumor growth. While investigating the role of PTH in the antimyeloma effect, we observed the recovery of serum PTH levels after thyroparathyroidectomy (TPTX). Although the presence of thymus-derived PTH has been reported previously, the existence or role of thymic PTH in the serum remains controversial. Here, TPTX was performed in 8- to 12-week-old C57BL/KaLwRij mice to delineate the potential source(s) for the recovery of serum PTH. Immediately after TPTX, the expected loss of measurable serum PTH was observed. Serum PTH levels recovered 3 to 4 weeks after TPTX. Thirteen endocrine organs from mice with recovered serum PTH were examined. The thymus from control mice expressed measurable and detectable Pth transcripts; however, the Pth transcript level was substantially elevated in tissue from TPTX mice. Western blot analysis of the thymus demonstrated a reproducible and distinct PTH band in thymus tissue that was significantly increased after TPTX. To directly confirm the identity of the distinct PTH band, immunoprecipitated proteins were isolated and subjected to tandem mass spectrometry. After fragmentation and direct peptide sequencing, PTH peptides PTH(1-13) and PTH(54-70), diagnostic for PTH, were identified. These data demonstrate that the murine thymus produces PTH and that after TPTX the thymus becomes the major source of serum PTH, compensating for the loss of the parathyroid glands and returning circulating PTH levels to normal.


Assuntos
Hormônio Paratireóideo/metabolismo , Paratireoidectomia , Timo/metabolismo , Tireoidectomia , Animais , Cálcio/sangue , Camundongos , Camundongos Endogâmicos C57BL , Hormônio Paratireóideo/sangue
16.
Biomaterials ; 183: 67-76, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30149231

RESUMO

Degradation of the extracellular matrix (ECM) is one of the fundamental factors contributing to a variety of life-threatening or disabling pathological conditions. However, a thorough understanding of the degradation mechanism and development of new ECM-targeting diagnostics are severely hindered by a lack of technologies for direct interrogation of the ECM structures at the molecular level. Previously we demonstrated that the collagen hybridizing peptide [CHP, sequence: (GPO)9, O: hydroxyproline] can specifically recognize the degraded and unfolded collagen chains through triple helix formation. Here we show that fluorescently labeled CHP robustly visualizes the pericellular matrix turnover caused by proteolytic migration of cancer cells within 3D collagen culture, without the use of synthetic fluorogenic matrices or genetically modified cells. To facilitate in vivo imaging, we modified the CHP sequence by replacing each proline with a (2S,4S)-4-fluoroproline (f) residue which interferes with the peptide's inherent propensity to self-assemble into homo-triple helices. We show that the new CHP, (GfO)9, tagged with a near-infrared fluorophore, enables in vivo imaging and semi-quantitative assessment of osteolytic bone lesions in mouse models of multiple myeloma. Compared to conventional techniques (e.g., micro-CT), CHP-based imaging is simple and versatile in vitro and in vivo. Therefore, we envision CHP's applications in broad biomedical contexts ranging from studies of ECM biology and drug efficiency to development of clinical molecular imaging.


Assuntos
Colágeno/metabolismo , Oligopeptídeos/química , Animais , Reabsorção Óssea/diagnóstico por imagem , Linhagem Celular Tumoral , Movimento Celular , Células Cultivadas , Matriz Extracelular/metabolismo , Feminino , Corantes Fluorescentes/química , Camundongos , Mieloma Múltiplo/diagnóstico por imagem , Mieloma Múltiplo/patologia , Prolina/análogos & derivados , Prolina/química , Conformação Proteica em alfa-Hélice , Proteólise
17.
Exp Biol Med (Maywood) ; 243(3): 262-271, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29405770

RESUMO

Liquid biopsy methodologies, for the purpose of plasma genotyping of cell-free DNA (cfDNA) of solid tumors, are a new class of novel molecular assays. Such assays are rapidly entering the clinical sphere of research-based monitoring in translational oncology, especially for thoracic malignancies. Potential applications for these blood-based cfDNA assays include: (i) initial diagnosis, (ii) response to therapy and follow-up, (iii) tumor evolution, and (iv) minimal residual disease evaluation. Precision medicine will benefit from cutting-edge molecular diagnostics, especially regarding treatment decisions in the adjuvant setting, where avoiding over-treatment and unnecessary toxicity are paramount. The use of innovative genetic analysis techniques on individual patient tumor samples is being pursued in several advanced clinical trials. Rather than using a categorical treatment plan, the next critical step of therapeutic decision making is providing the "right" cancer therapy for an individual patient, including correct dose and timeframe based on the molecular analysis of the tumor in question. Per the 21st Century Cures Act, innovative clinical trials are integral for biomarker and drug development. This will include advanced clinical trials utilizing: (i) innovative assays, (ii) molecular profiling with cutting-edge bioinformatics, and (iii) clinically relevant animal or tissue models. In this paper, a mini-review addresses state-of-the-art liquid biopsy approaches. Additionally, an on-going advanced clinical trial for lung cancer with novelty through synergizing liquid biopsies, co-clinical trials, and advanced bioinformatics is also presented. Impact statement Liquid biopsy technology is providing a new source for cancer biomarkers, and adds new dimensions in advanced clinical trials. Utilizing a non-invasive routine blood draw, the liquid biopsy provides abilities to address perplexing issues of tumor tissue heterogeneity by identifying mutations in both primary and metastatic lesions. Regarding the assessment of response to cancer therapy, the liquid biopsy is not ready to replace medical imaging, but adds critical new information; for instance, through a temporal assessment of quantitative circulating tumor DNA (ctDNA) assay results, and importantly, the ability to monitor for signs of resistance, via emerging clones. Adjuvant therapy may soon be considered based on a quantitative cfDNA assay. As sensitivity and specificity of the technology continue to progress, cancer screening and prevention will improve and save countless lives by finding the cancer early, so that a routine surgery may be all that is required for a definitive cure.


Assuntos
Biomarcadores Tumorais/genética , Ácidos Nucleicos Livres/genética , DNA de Neoplasias/sangue , Biópsia Líquida/métodos , Neoplasias Pulmonares/diagnóstico , Neoplasia Residual/diagnóstico , Medicina de Precisão/métodos , Biomarcadores Tumorais/sangue , Tomada de Decisão Clínica , Genótipo , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/genética , Neoplasia Residual/sangue , Neoplasia Residual/genética
18.
J Bone Miner Res ; 32(6): 1261-1266, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28240368

RESUMO

Osteolytic bone lesions are a hallmark of multiple myeloma (MM) bone disease. Bone destruction is associated with severely imbalanced bone remodeling, secondary to increased osteoclastogenesis and significant osteoblast suppression. Lytic lesions of the pelvis are relatively common in MM patients and are known to contribute to the increased morbidity because of the high risk of fracture, which frequently demands extensive surgical intervention. After observing unexpected radiological improvement in serial large pelvic CT assessment in a patient treated in a total therapy protocol, the radiographic changes of pelvic osteolytic lesions by PET/CT scanning in patients who received Total Therapy 4 (TT4) treatment for myeloma were retrospectively analyzed. Sixty-two (62) patients with lytic pelvic lesions >1 cm in diameter were identified at baseline PET/CT scanning. Follow-up CT studies showed that 27 of 62 patients (43%) with large baseline pelvic lesions achieved significant reaccumulation of radiodense mineralization at the lytic cortical site. The average size of lytic lesions in which remineralization occurred was 4 cm (range, 1.3 to 10 cm). This study clearly demonstrates that mineral deposition in large pelvic lesions occurs in a significant proportion of MM patients treated with TT4, potentially affecting patient outcomes, quality of life, and future treatment strategies. © 2017 American Society for Bone and Mineral Research.


Assuntos
Calcificação Fisiológica , Mieloma Múltiplo/fisiopatologia , Mieloma Múltiplo/terapia , Pelve/patologia , Pelve/fisiopatologia , Adulto , Idoso , Fosfatase Alcalina/metabolismo , Feminino , Humanos , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/diagnóstico por imagem , Mieloma Múltiplo/patologia , Pelve/diagnóstico por imagem , Tomografia Computadorizada por Raios X
19.
Haematologica ; 91(3): 411-2, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16503546

RESUMO

JAK2(V617F)an acquired mutation of JAK2, is present in a majority of patients with polycythemia vera and to a lesser extent among patients with the other myeloproliferative disorders. We analyzed the effect of JAK2(V617F) on the expression of polycythemia rubra vera 1(PRV-1), using an in vitro model. Compared to wild-type JAK2, the presence of JAK2(V617F) increased both PRV-1 protein and mRNA levels in murine myeloid cells. A JAK2 inhibitor eliminated the V617F-induced increase in PRV-1 expression.


Assuntos
Isoantígenos/biossíntese , Glicoproteínas de Membrana/biossíntese , Mutação , Proteínas Tirosina Quinases/biossíntese , Proteínas Proto-Oncogênicas/biossíntese , Receptores de Superfície Celular/biossíntese , Substituição de Aminoácidos/genética , Proteínas Ligadas por GPI , Regulação Enzimológica da Expressão Gênica/fisiologia , Humanos , Isoantígenos/genética , Janus Quinase 2 , Glicoproteínas de Membrana/genética , Fenilalanina/genética , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/biossíntese , Receptores de Superfície Celular/genética , Regulação para Cima/genética , Valina/genética
20.
J Mol Med (Berl) ; 94(5): 597-608, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26706855

RESUMO

UNLABELLED: Mutations of the truncated cytoplasmic domain of human erythropoietin receptor (EPOR) result in gain-of-function of erythropoietin (EPO) signaling and a dominantly inherited polycythemia, primary familial and congenital polycythemia (PFCP). We interrogated the unexplained transient absence of perinatal polycythemia observed in PFCP patients using an animal model of PFCP to examine its erythropoiesis during embryonic, perinatal, and early postnatal periods. In this model, we replaced the murine EpoR gene (mEpoR) with the wild-type human EPOR (wtHEPOR) or mutant human EPOR gene (mtHEPOR) and previously reported that the gain-of-function mtHEPOR mice become polycythemic at 3~6 weeks of age, but not at birth, similar to the phenotype of PFCP patients. In contrast, wtHEPOR mice had sustained anemia. We report that the mtHEPOR fetuses are polycythemic, but their polycythemia is abrogated in the perinatal period and reappears again at 3 weeks after birth. mtHEPOR fetuses have a delayed switch from primitive to definitive erythropoiesis, augmented erythropoietin signaling, and prolonged Stat5 phosphorylation while the wtHEPOR fetuses are anemic. Our study demonstrates the in vivo effect of excessive EPO/EPOR signaling on developmental erythropoiesis switch and describes that fetal polycythemia in this PFCP model is followed by transient correction of polycythemia in perinatal life associated with low Epo levels and increased exposure of erythrocytes' phosphatidylserine. We suggest that neocytolysis contributes to the observed perinatal correction of polycythemia in mtHEPOR newborns as embryos leaving the hypoxic uterus are exposed to normoxia at birth. KEY MESSAGE: Human gain-of-function EPOR (mtHEPOR) causes fetal polycythemia in knock-in mice. Wild-type human EPOR causes fetal anemia in knock-in mouse model. mtHEPOR mice have delayed switch from primitive to definitive erythropoiesis. Polycythemia of mtHEPOR mice is transiently corrected in perinatal life. mtHEPOR newborns have low Epo and increased exposure of erythrocytes' phosphatidylserine.


Assuntos
Mutação com Ganho de Função , Regulação da Expressão Gênica , Hemoglobinas/genética , Receptores da Eritropoetina/genética , Anemia/sangue , Anemia/genética , Anemia/metabolismo , Animais , Eritrócitos/metabolismo , Células Precursoras Eritroides/metabolismo , Eritropoese/genética , Eritropoetina/metabolismo , Genótipo , Hematócrito , Humanos , Camundongos , Camundongos Transgênicos , Fosforilação , Policitemia/sangue , Policitemia/genética , Policitemia/metabolismo , Receptores da Eritropoetina/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA