Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Clin Ultrasound ; 52(4): 445-447, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38436144

RESUMO

Urethral lesions in pediatric patients can be visualized using ultrasonography. Therefore, sonographers and physicians should be familiar with the technique.


Assuntos
Ultrassonografia , Uretra , Humanos , Uretra/diagnóstico por imagem , Ultrassonografia/métodos , Criança , Masculino , Doenças Uretrais/diagnóstico por imagem , Pré-Escolar , Lactente
2.
Pediatr Blood Cancer ; 60(3): 383-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22911660

RESUMO

BACKGROUND: The identification of tissue-specific differentially methylated regions (tDMRs) is key to our understanding of mammalian development. Research has indicated that tDMRs are aberrantly methylated in cancer and may affect the oncogenic process. PROCEDURE: We used the MassARRAY EpiTYPER system to determine the quantitative methylation levels of seven neuroblastomas (NBs) and two control adrenal medullas at 12 conserved tDMRs. A second sample set of 19 NBs was also analyzed. Statistical analysis was carried out to determine the relationship of the quantitative methylation levels to other prognostic factors in these sample sets. RESULTS: Screening of 12 tDMRs revealed 2 genomic regions (SLC16A5 and ZNF206) with frequent aberrant methylation patterns in NB. The methylation levels of SLC16A5 and ZNF206 were low compared to the control adrenal medullas. The SLC16A5 methylation level (cut-off point, 13.25%) was associated with age at diagnosis, disease stage, and Shimada classification but not with MYCN amplification. The ZNF206 methylation level (cut-off point, 68.80%) was associated with all of the prognostic factors analyzed. Although the methylation levels at these regions did not reach statistical significance in their association with prognosis in mono-variant analysis, patients with both hypomethylation of SLC16A5 and hypermethylation of ZNF206 had a significantly prolonged event-free survival, when these two variables were analyzed together. CONCLUSIONS: We demonstrated that two tDMRs frequently displayed altered methylation patterns in the NB genome, suggesting their distinct involvement in NB development/differentiation. The combined analysis of these two regions could serve as a diagnostic biomarker for poor clinical outcome.


Assuntos
Metilação de DNA/genética , Neuroblastoma/genética , Neuroblastoma/mortalidade , Fatores de Transcrição/genética , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Criança , Pré-Escolar , Proteínas de Ligação a DNA , Intervalo Livre de Doença , Feminino , Humanos , Lactente , Estimativa de Kaplan-Meier , Masculino , Reação em Cadeia da Polimerase
3.
Case Rep Pediatr ; 2023: 5593369, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711640

RESUMO

Inguinal hernia is the most common surgical disease in pediatric patients, and urgent intervention such as manual reduction is needed for incarcerated inguinal hernia. Torsion of undescended testes, inguinal herniated ovarian torsion, and purulent lymphadenitis are mimickers of this condition. If these mimicker lesions are misdiagnosed as incarcerated inguinal hernia, manual reduction usually fails, and edematous and erythematous changes may occur in these mimicker lesions due to manual reduction. For physicians in the emergency department, prompt decisions and familiarity with the sonographic appearance of different contents within an inguinal hernia are important to accurately diagnose these mimickers. In this case series, we present sonographic images of a typical case of incarcerated inguinal hernia (an 11-month-old male with right incarcerated inguinal hernia) and three cases of mimicker lesions (a 7-month-old female with herniated ovarian torsion, a 7-year-old boy with undescended testicular torsion, and a 2-month-old male with purulent lymphadenitis). The incidence of incarcerated inguinal hernia is reported to be higher in males (80%), on the right side (60%), and in infants and toddlers. This information is important for diagnosing mimicker lesions. In addition, to prevent manual reduction in mimicker diseases, point-of-care ultrasound before manual reduction in suspected cases of incarcerated inguinal hernia is important.

4.
Med Oncol ; 36(8): 66, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31183633

RESUMO

Nuclear receptor subfamily 4, group A, member 3 (NR4A3) is a member of the NR4A subgroup of orphan nuclear receptors, implicated in the regulation of diverse biological functions, including metabolism, angiogenesis, inflammation, cell proliferation, and apoptosis. Although many reports have suggested the involvement of NR4A3 in the development and/or progression of tumors, its role varies among tumor types. Previously, we reported that DNA hypomethylation at NR4A3 exon 3 is associated with lower survival rate of neuroblastoma (NB) patients. As hypomethylation of this region results in reduced expression of NR4A3, our observations suggested that NR4A3 functions as a tumor suppressor in NB. However, the exact mechanisms underlying its functions have not been clarified. In the present study, we analyzed public databases and showed that reduced NR4A3 expression was associated with shorter survival period of NB in two out of three datasets. An in vitro study revealed that forced expression of NR4A3 in human NB-derived cell line NB1 resulted in elongation of neurites along with overexpression of GAP43, one of the differentiation markers of NB. On the other hand, siRNA-mediated knockdown of NR4A3 suppressed the expression level of GAP43. Interestingly, the forced expression of NR4A3 induced only the GAP43 but not the other molecules involved in NB cell differentiation, such as MYCN, TRKA, and PHOX2B. These results indicated that NR4A3 directly activates the expression of GAP43 and induces differentiated phenotypes of NB cells, without affecting the upstream signals regulating GAP43 expression and NB differentiation.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Neuroblastoma/metabolismo , Receptores de Esteroides/biossíntese , Receptores dos Hormônios Tireóideos/biossíntese , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Progressão da Doença , Proteína GAP-43/biossíntese , Técnicas de Silenciamento de Genes , Humanos , Neuritos/metabolismo , Neuritos/patologia , Neuroblastoma/genética , Neuroblastoma/patologia , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Receptores de Esteroides/genética , Receptores dos Hormônios Tireóideos/genética , Regulação para Cima
5.
Int J Oncol ; 53(1): 159-166, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29750423

RESUMO

Neuropilin 1 (NRP1) is a transmembrane glycoprotein, which regulates many aspects of cellular function by functioning as co-receptor of various ligands. Recent studies have suggested that NRP1 promotes tumorigenesis, not only by activating the growth of tumor vessels, but also by activating the growth or migration of tumor cells themselves. The present study was performed to elucidate the roles of NRP1 in the development and/or progression of neuroblastoma (NB). In contrast to previous observations in various types of cancer, the analysis of public datasets indicated that lower levels of NRP1 expression were significantly associated with a shorter survival period of patients with NB. Consistent with this finding, wound-healing assay and Matrigel invasion assay revealed that NB cells in which NRP1 was knocked down exhibited increased migratory and invasive abilities. Further analyses indicated that ß1 integrin expression was markedly increased in NB cells in which NRP1 was knocked down, and NB cells in which ß1 integrin was knocked down exhibited decreased migratory and invasive abilities. The results presented herein indicate that NRP1 exerts tumor suppressive effects in NB, at least in part by regulating the expression of ß1 integrin.


Assuntos
Integrina beta1/genética , Neuroblastoma/genética , Neuropilina-1/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Humanos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Neuroblastoma/patologia , Transdução de Sinais/genética
7.
Med Oncol ; 34(9): 158, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28791558

RESUMO

Although DNA hypermethylation at non-promoter region of the Zygote arrest 1 (ZAR1) gene has been observed in many types of tumor, including neuroblastoma (NB), the role of this gene in tumor development and/or progression is unclear. One reason is that knowledge about the function of ZAR1 protein is limited. Although it has been reported that ZAR1 plays a crucial role in early embryogenesis and may act as a transcriptional repressor for some transcripts, the detailed mechanism is still elusive. In the present study, we analyzed public data of NB patients and found that higher expression levels of ZAR1 were significantly associated with a shorter survival period. Consistent with this result, ZAR1-depleted NB cells showed well-differentiated phenotypes with elongated neurites and upregulated expression of TRKA and RET, which are markers for differentiated NB. Moreover, the expression level of MYCN protein was markedly suppressed in ZAR1-depleted NB cells. MYCN-depleted cells showed similar phenotypes to ZAR1-depleted cells. The present findings indicate that ZAR1 has oncogenic effects in NB by suppressing cell differentiation via regulation of MYCN expression.


Assuntos
Proteínas do Ovo/genética , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Neuroblastoma/patologia , Diferenciação Celular/genética , Proteínas do Ovo/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Estimativa de Kaplan-Meier , Neuritos/patologia , Neuroblastoma/mortalidade , Prognóstico , RNA Interferente Pequeno
8.
Oncol Rep ; 37(4): 2459-2464, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28260105

RESUMO

Neuroblastoma is a childhood malignancy originating from the sympathetic nervous system and accounts for approximately 15% of all pediatric cancer-related deaths. To newly identify gene(s) implicated in the progression of neuroblastoma, we investigated aberrantly methylated genomic regions in mouse skin tumors. Previously, we reported that TFAP2E, a member of activator protein-2 transcription factor family, is highly methylated within its intron and its expression is strongly suppressed in mouse skin tumors compared with the normal skin. In the present study, we analyzed public data of neuroblastoma patients and found that lower expression levels of TFAP2E are significantly associated with a shorter survival. The data indicate that TFAP2E acts as a tumor suppressor of neuroblastoma. Consistent with this notion, TFAP2E-depleted neuroblastoma NB1 and NB9 cells displayed a substantial resistance to DNA damage arising from adriamycin (ADR), cisplatin (CDDP) and ionizing radiation (IR). Silencing of TFAP2E caused a reduced ADR-induced proteolytic cleavage of caspase-3 and PARP. Of note, compared with the untransfected control cells, ADR-mediated stimulation of CDK inhibitor p21WAF1 was markedly upregulated in TFAP2E­knocked down cells. Therefore, our present findings strongly suggest that TFAP2E has a pivotal role in the regulation of DNA damage response in NB cells through the induction of p21WAF1.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação para Baixo , Doxorrubicina/farmacologia , Neuroblastoma/patologia , Fator de Transcrição AP-2/genética , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Regulação Neoplásica da Expressão Gênica , Humanos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Prognóstico , Análise de Sobrevida , Fator de Transcrição AP-2/metabolismo
9.
Int J Oncol ; 47(1): 115-21, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25998555

RESUMO

KvDMR (an intronic CpG island within the KCNQ1 gene) is one of the imprinting control regions on human chromosome 11p15.5. Since KvDMR exists within the promoter region of KCNQ1OT1 (antisense transcript of KCNQ1), it is likely that genomic alterations of this region including deletion, paternal uniparental disomy and de-methylation in maternal allele lead to aberrant overexpression of KCNQ1OT1. Indeed, de-methylation of KvDMR accompanied by uncontrolled overexpression of KCNQ1OT1 occurs frequently in Beckwith-Wiedemann syndrome (BWS), and around 10% of BWS patients developed embryonal tumors (Wilms' tumor or hepatoblastoma). These observations strongly suggest that silencing of KCNQ1OT1 expression might suppress its oncogenic potential. In the present study, we designed two pyrrole-imidazole (PI) polyamides, termed PI-a and PI-b, which might have the ability to bind to CCAAT boxes of the KCNQ1OT1 promoter region, and investigated their possible antitumor effect on Wilms' tumor-derived G401 cells. Gel retardation assay demonstrated that PI-a and PI-b specifically bind to their target sequences. Microscopic observations showed the efficient nuclear access of these PI polyamides. Quantitative real-time PCR analysis revealed that the expression level of KCNQ1OT1 was significantly decreased when treated with PI-a and PI-b simultaneously but not with either PI-a or PI-b single treatment. Consistent with these results, the combination of PI-a and PI-b resulted in a significant reduction in viability of G401 cells in a dose-dependent manner. Furthermore, FACS analysis demonstrated that combinatory treatment with PI-a and PI-b induces cell death as compared with control cells. Taken together, our present observations strongly suggest that the combinatory treatment with PI polyamides targeting KCNQ1OT1 might be a novel therapeutic strategy to cure patients with tumors over-expressing KCNQ1OT1.


Assuntos
Benzimidazóis/farmacologia , Imidazóis/farmacologia , Neoplasias Renais/genética , Nylons/farmacologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Pirróis/farmacologia , Tumor de Wilms/genética , Benzimidazóis/síntese química , Morte Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inativação Gênica , Humanos , Imidazóis/síntese química , Neoplasias Renais/tratamento farmacológico , Nylons/síntese química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Pirróis/síntese química , Tumor de Wilms/tratamento farmacológico
10.
Int J Oncol ; 44(5): 1669-77, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24626568

RESUMO

Aberrant methylation of Nr4a3 exon 3 CpG island (CpGi) was initially identified during multistep mouse skin carcinogenesis. Nr4a3 is also known as a critical gene for neuronal development. Thus, we examined the Nr4a3 exon 3 CpGi methylation in mouse brain tissues from 15-day embryos, newborns and 12-week-old adults and found significant increase of its methylation and Nr4a3 expression during mouse brain development after birth. In addition, homologous region in human genome was frequently and aberrantly methylated in neuroblastoma specimens. A quantitative analysis of DNA methylation revealed that hypomethylation of CpG islands on Nr4a3 exon 3, but not on exon 1 was identified in three neuroblastomas compared with matched adrenal glands. Additional analysis for 20 neuroblastoma patients was performed and 8 of 20 showed hypomethylation of the CpGi on Nr4a3 exon 3. The survival rate of those 8 patients was significantly lower compared with those in patients with hypermethylation. Immunohistochemical Nr4a3 expression was generally faint in neuroblastoma tissues compared with normal tissues. Moreover, the MYCN amplified NB9 cell line showed hypomethylation and low expression of Nr4a3, while the non-MYCN amplified NB69 cell line showed hypermethylation and high expression. These results indicate that DNA hypomethylation of the CpGi at Nr4a3 exon 3 is associated with low Nr4a3 expression, and correlates with poor prognosis of neuroblastoma. Since Nr4a3 upregulation associated with the hypermethylation and neuronal differentiation in mice, poor prognosis of neuroblastoma associated with Nr4a3 low expression may be partly explained by dysregulation of its differentiation.


Assuntos
Encéfalo/crescimento & desenvolvimento , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Neuroblastoma/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Criança , Ilhas de CpG , Epigênese Genética , Éxons , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Prognóstico , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Receptores dos Hormônios Tireóideos/genética , Receptores dos Hormônios Tireóideos/metabolismo , Adulto Jovem
11.
J Pediatr Surg ; 48(4): 782-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23583134

RESUMO

BACKGROUND: The comprehensive methylation analysis of tumor-specific differently methylated regions in malignant melanomas and brain tumors has led to the identification of non-promoter hypermethylation of zygote arrest 1 (ZAR1). To search the non-promoter ZAR1 hypermethylation in neuroblastomas, we analyzed the levels of the methylation and transcript expression of ZAR1. METHODS: The MassARRAY® EpiTYPER (Sequenom Inc., San Diego, CA, USA) system was optimized to determine the quantitative methylation levels of ZAR1 for 12 neuroblastoma cell lines, 23 neuroblastoma samples and four adrenal samples. ZAR1 expression levels were evaluated through a quantitative, real-time reverse transcription-polymerase chain reaction. The quantitative methylation levels of ZAR1 were subjected to correlation studies with the established markers of progressive disease and outcome. RESULTS: Strikingly, the hypermethylation of ZAR1 regions and ZAR1 expression levels was observed in the neuroblastoma cell lines and neuroblastoma samples, compared to the adrenal samples. Somatic changes in ZAR1 methylation and ZAR1 expression were found in all three neuroblastoma patients. In the ZAR1 regions, poor-outcome tumors that were MYCN-amplified and/or Stage 3 or 4 and/or the age at diagnosis was≥18months, and/or showed an unfavorable histology were frequently hypermethylated. CONCLUSION: Our results indicate that the hypermethylation of ZAR1 regions is extremely frequent in neuroblastomas and correlates with established markers of progressive disease and outcome.


Assuntos
Proteínas do Ovo/genética , Neuroblastoma/genética , Criança , Pré-Escolar , Metilação de DNA , Progressão da Doença , Feminino , Humanos , Lactente , Masculino , Estadiamento de Neoplasias , Neuroblastoma/patologia , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Estatísticas não Paramétricas , Taxa de Sobrevida
12.
Int J Oncol ; 40(1): 31-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22011711

RESUMO

Differentiation of human neuroblastoma recapitulates neural crest development. In our whole genome DNA methylation screening of tissue-specific differentially methylated regions (T-DMRs) and developmental stage specific differentially methylated regions (DS-DMRs) we reported that the exon 5 CpG island (CpGi) of Zfp206 (human: ZNF206), which was required to maintain embryonic stem cells in a pluripotent state, was one of potent brain and testis-specific T-DMRs in mice. In this study methylation level of the CpG sites at Zfp206-exon 5 CpGi in mouse brain samples at three different developmental stages (15-day-old embryo; E15, new born; NB, 12-week adult; AD) were quantitatively analyzed and it was identified that Zfp206-exon 5 CpGi was the DS-DMRs in mouse brain. In AD brains, Zfp206-exon 5 CpGi was significantly hypomethylated and Zfp206 expression was repressed, compared with E15 and NB brains. Hence, methylation level of human 5'-end of CpGi at ZNF206-exon 5, which is homologous CpGi to mice, was analyzed in neuroblastomas. Although all four adrenal samples showed complete methylation at the homologous region, we found the hypomethylation in 7 out of 26 neuroblastomas and a significant association between the hypomethylation and poor prognosis. In neuroblastoma cell lines and specimens, the hypomethylation was also associated with ZNF206 expression. These data indicated that the changes in DNA methylation levels at the Zfp206-exon 5 might be one of the important factors during neuronal development in mice and that the hypomethylation of the homologous region induced ZNF206 expression in humans and was associated with human neuroblastomagenesis. Even though the function of ZNF206 and its expression regulation in neuroblastoma remain elusive, ZNF206 might be a candidate differentiation suppressor and prognosis marker in neuroblastoma.


Assuntos
Transformação Celular Neoplásica/genética , Ilhas de CpG , Metilação de DNA , Éxons , Neuroblastoma/genética , Neurônios/citologia , Fatores de Transcrição/genética , Dedos de Zinco/genética , Glândulas Suprarrenais/química , Glândulas Suprarrenais/fisiologia , Animais , Diferenciação Celular/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/patologia , Proteínas de Ligação a DNA , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neuroblastoma/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA