Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Neuroinflammation ; 21(1): 123, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725082

RESUMO

BACKGROUND: Hepatic encephalopathy (HE) is closely associated with inflammatory responses. However, as a crucial regulator of the immune and inflammatory responses, the role of leucine-rich repeat kinase 2 (LRRK2) in the pathogenesis of HE remains unraveled. Herein, we investigated this issue in thioacetamide (TAA)-induced HE following acute liver failure (ALF). METHODS: TAA-induced HE mouse models of LRRK2 wild type (WT), LRRK2 G2019S mutation (Lrrk2G2019S) and LRRK2 knockout (Lrrk2-/-) were established. A battery of neurobehavioral experiments was conducted. The biochemical indexes and pro-inflammatory cytokines were detected. The prefrontal cortex (PFC), striatum (STR), hippocampus (HIP), and liver were examined by pathology and electron microscopy. The changes of autophagy-lysosomal pathway and activity of critical Rab GTPases were analyzed. RESULTS: The Lrrk2-/--HE model reported a significantly lower survival rate than the other two models (24% vs. 48%, respectively, p < 0.05), with no difference found between the WT-HE and Lrrk2G2019S-HE groups. Compared with the other groups, after the TAA injection, the Lrrk2-/- group displayed a significant increase in ammonium and pro-inflammatory cytokines, aggravated hepatic inflammation/necrosis, decreased autophagy, and abnormal phosphorylation of lysosomal Rab10. All three models reported microglial activation, neuronal loss, disordered vesicle transmission, and damaged myelin structure. The Lrrk2-/--HE mice presented no severer neuronal injury than the other genotypes. CONCLUSIONS: LRRK2 deficiency may exacerbate TAA-induced ALF and HE in mice, in which inflammatory response is evident in the brain and aggravated in the liver. These novel findings indicate a need of sufficient clinical awareness of the adverse effects of LRRK2 inhibitors on the liver.


Assuntos
Encefalopatia Hepática , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Falência Hepática Aguda , Camundongos Knockout , Tioacetamida , Animais , Camundongos , Encefalopatia Hepática/patologia , Encefalopatia Hepática/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/patologia , Falência Hepática Aguda/genética , Camundongos Endogâmicos C57BL , Tioacetamida/toxicidade
2.
Exp Neurol ; 359: 114230, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36162511

RESUMO

The disruption of nucleus accumbens (NAc) function impacts mood and learning behavior in α-Synucleinopathy, in which microglial synaptic pruning plays a pivotal role in modulating the neuropathologic progression. Available literature documents that in microglia, the activation of cannabinoid receptor 2 (CB2R) decreases inflammation, but it remains obscured regarding the roles of CB2R in microglia-mediated synaptic pruning in the NAc during the neuropathological progression of α-Synucleinopathy. We adopted the fibrillar α-Synuclein (α-Syn) treatment to characterize the effect of genetic CB2R deletion on microglial function and the signaling pathway. CB2R knockout (CB2-/-) mice and wild-type (CB2+/+) mice were divided into the α-Syn or saline treatment groups. Biochemical and microscopy approaches, including immunofluorescence, real-time PCR, and western blotting, were employed to assess the changes in homeostasis of synaptic pruning in NAc under the α-Syn-induced microglia. Moreover, the underlying mechanisms of CB2R on α-Syn induced microglial activity was assessed in vitro. After the injection of α-Syn into the NAc, distinct microglial morphological changes and M1 phenotype transformation were observed between CB2-/- and CB2+/+ mice. Meanwhile, after the α-Syn treatment, CB2-/- mice showed an increased upregulation of CD68 protein and IL-1ß mRNA but decreased brain-derived neurotrophic factor (BDNF) and TGF-ß mRNA compared with CB2+/+ mice. Additionally, CB2-/- microglia after the treatment showed a highly enriched complement 3a receptor (C3aR) producing excessive pruning of cholinergic synapses but less engulfment of dopaminergic synapses. Mechanistically, the loss of CB2R function in the α-Syn stimulation triggered c-Fos activation in microglia, but not in neurons. Further inhibition of microglial CB2R functions under α-Syn stimulation activated the phosphorylated cAMP-response element-binding protein (pCREB)-c-Fos, which was closely related to the C3aR upregulation. Our results reveal a critical and mechanistic role of CB2R in altering the microglial function and its value in the homeostasis of synaptic circuits in the NAc under the α-Syn pathology.


Assuntos
Microglia , Sinucleinopatias , Animais , Camundongos , Microglia/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Núcleo Accumbens/metabolismo , Transdução de Sinais , Plasticidade Neuronal , RNA Mensageiro/metabolismo , Receptores de Canabinoides/metabolismo
3.
J Mol Neurosci ; 72(3): 527-543, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34409578

RESUMO

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most frequent cause of autosomal dominant Parkinson's disease (PD), producing psychiatric and motor symptoms. We conducted this study to explore whether microglial dopaminergic (DAergic) fiber refinement and synaptic pruning are involved in the abnormal behavioral phenotypes of carriers of the LRRK2 G2019S mutation, by employing young and middle-aged PD model mice. The results revealed a characteristic late-onset hyperactivity and a progressive decline in the motor coordination of the LRRK2 G2019S mutation mice. LRRK2 G2019S mutation-induced aberrant microglial morphogenesis, with more branches and junctions per cell, resulted in excessive microglial refinement of dopaminergic (DAergic) fibers. Moreover, aberrant synaptic pruning distinctly impacted the prefrontal cortex (PFC) and dorsal striatum (DS), with significantly higher spine density in the PFC but the opposite effects in the DS region. Furthermore, LRRK2 G2019S mutation remodeled the inflammatory transcription landscape of microglia, rendering certain cerebral areas highly susceptible to microglial immune response. These findings indicate that LRRK2 G2019S mutation induces the production of inflammatory cytokines and mediates abnormal microglial morphogenesis and activity, resulting in abnormal phagocytosis, synaptic pruning and loss of DAergic fibers during aging, and, eventually, PD-related behavioral abnormalities.


Assuntos
Dopamina , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Microglia , Animais , Comportamento Animal , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Camundongos , Mutação , Plasticidade Neuronal
4.
Brain Sci ; 12(9)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36138936

RESUMO

Mutations of the leucine-rich repeat kinase 2 (LRRK2) gene are associated with pronounced sleep disorders or cognitive dysfunction in neurodegenerative diseases. However, the effects of LRRK2 deficiency on sleep rhythms and sleep deprivation-related cognitive changes, and the relevant underlying mechanism, remain unrevealed. In this study, Lrrk2-/- and Lrrk2+/+ mice were subjected to normal sleep (S) or sleep deprivation (SD). Sleep recording, behavioral testing, Golgi-cox staining, immunofluorescence, and real-time PCR were employed to evaluate the impacts of LRRK2 deficiency on sleep behaviors and to investigate the underlying mechanisms. The results showed that after SD, LRRK2-deficient mice displayed lengthened NREM and shortened REM, and reported decreased dendritic spines, increased microglial activation, and synaptic endocytosis in the prefrontal cortex. Meanwhile, after SD, LRRK2 deficiency aggravated cognitive impairments, especially in the recall memory cued by fear conditioning test. Our findings evidence that LRRK2 modulates REM/NREM sleep and its deficiency may exacerbate sleep deprivation-related cognitive disorders by perturbing synaptic plasticity and microglial synaptic pruning in mice.

5.
Neuroimage ; 57(3): 760-70, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21146615

RESUMO

In alphabetic language systems, converging evidence indicates that developmental dyslexia represents a disorder of phonological processing both behaviorally and neurobiologically. However, it is still unknown whether, impaired phonological processing remains the core deficit of impaired English reading in individuals with English as their second language and how it is represented in the neural cortex. Using functional magnetic resonance imaging, the present study investigated the neural responses to letter rhyming judgment (phonological task) and letter same/different judgment (orthographic task) in Chinese school children with English and Chinese reading impairment compared to typically developing children. Whole brain analyses with multiple comparison correction revealed reduced activation within the left lingual/calcarine gyrus during orthographic processing in children with reading impairment compared to typical readers. An independent region of interest analysis showed reduced activation in occipitotemporal regions during orthographic processing, and reduced activation in parietotemporal regions during phonological processing, consistent with previous studies in English native speakers. These results suggest that similar neural deficits are involved for impaired phonological processing in English as both the first and the second language acquired. These findings pose implications for reading remediation, educational curriculum design, and educational policy for second language learners.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiopatologia , Multilinguismo , Percepção da Fala/fisiologia , Percepção Visual/fisiologia , Criança , Dislexia/fisiopatologia , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Leitura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA