RESUMO
Data-driven disease progression models are an emerging set of computational tools that reconstruct disease timelines for long-term chronic diseases, providing unique insights into disease processes and their underlying mechanisms. Such methods combine a priori human knowledge and assumptions with large-scale data processing and parameter estimation to infer long-term disease trajectories from short-term data. In contrast to 'black box' machine learning tools, data-driven disease progression models typically require fewer data and are inherently interpretable, thereby aiding disease understanding in addition to enabling classification, prediction and stratification. In this Review, we place the current landscape of data-driven disease progression models in a general framework and discuss their enhanced utility for constructing a disease timeline compared with wider machine learning tools that construct static disease profiles. We review the insights they have enabled across multiple neurodegenerative diseases, notably Alzheimer disease, for applications such as determining temporal trajectories of disease biomarkers, testing hypotheses about disease mechanisms and uncovering disease subtypes. We outline key areas for technological development and translation to a broader range of neuroscience and non-neuroscience applications. Finally, we discuss potential pathways and barriers to integrating disease progression models into clinical practice and trial settings.
Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Progressão da DoençaRESUMO
Multiscale neuroscience conceptualizes mental illness as arising from aberrant interactions across and within multiple biopsychosocial scales. We leverage this framework to propose a multiscale disease progression model of psychosis, in which hippocampal-cortical dysconnectivity precedes impairments in episodic memory and social cognition, which lead to more severe negative symptoms and lower functional outcome. As psychosis represents a heterogeneous collection of biological and behavioral alterations that evolve over time, we further predict this disease progression for a subtype of the patient sample, with other patients showing normal-range performance on all variables. We sampled data from two cross-sectional datasets of first- and multi-episode psychosis, resulting in a sample of 163 patients and 119 non-clinical controls. To address our proposed disease progression model and evaluate potential heterogeneity, we applied a machine-learning algorithm, SuStaIn, to the patient data. SuStaIn uniquely integrates clustering and disease progression modeling and identified three patient subtypes. Subtype 0 showed normal-range performance on all variables. In comparison, Subtype 1 showed lower episodic memory, social cognition, functional outcome, and higher negative symptoms, while Subtype 2 showed lower hippocampal-cortical connectivity and episodic memory. Subtype 1 deteriorated from episodic memory to social cognition, negative symptoms, functional outcome to bilateral hippocampal-cortical dysconnectivity, while Subtype 2 deteriorated from bilateral hippocampal-cortical dysconnectivity to episodic memory and social cognition, functional outcome to negative symptoms. This first application of SuStaIn in a multiscale psychiatric model provides distinct disease trajectories of hippocampal-cortical connectivity, which might underlie the heterogeneous behavioral manifestations of psychosis.
Assuntos
Progressão da Doença , Hipocampo , Memória Episódica , Transtornos Psicóticos , Humanos , Hipocampo/fisiopatologia , Transtornos Psicóticos/fisiopatologia , Feminino , Masculino , Adulto , Estudos Transversais , Imageamento por Ressonância Magnética/métodos , Adulto Jovem , Cognição Social , Estudos Longitudinais , Esquizofrenia/fisiopatologia , Adolescente , Aprendizado de MáquinaRESUMO
Alzheimer's disease typically progresses in stages, which have been defined by the presence of disease-specific biomarkers: amyloid (A), tau (T) and neurodegeneration (N). This progression of biomarkers has been condensed into the ATN framework, in which each of the biomarkers can be either positive (+) or negative (-). Over the past decades, genome-wide association studies have implicated â¼90 different loci involved with the development of late-onset Alzheimer's disease. Here, we investigate whether genetic risk for Alzheimer's disease contributes equally to the progression in different disease stages or whether it exhibits a stage-dependent effect. Amyloid (A) and tau (T) status was defined using a combination of available PET and CSF biomarkers in the Alzheimer's Disease Neuroimaging Initiative cohort. In 312 participants with biomarker-confirmed A-T- status, we used Cox proportional hazards models to estimate the contribution of APOE and polygenic risk scores (beyond APOE) to convert to A+T- status (65 conversions). Furthermore, we repeated the analysis in 290 participants with A+T- status and investigated the genetic contribution to conversion to A+T+ (45 conversions). Both survival analyses were adjusted for age, sex and years of education. For progression from A-T- to A+T-, APOE-e4 burden showed a significant effect [hazard ratio (HR) = 2.88; 95% confidence interval (CI): 1.70-4.89; P < 0.001], whereas polygenic risk did not (HR = 1.09; 95% CI: 0.84-1.42; P = 0.53). Conversely, for the transition from A+T- to A+T+, the contribution of APOE-e4 burden was reduced (HR = 1.62; 95% CI: 1.05-2.51; P = 0.031), whereas the polygenic risk showed an increased contribution (HR = 1.73; 95% CI: 1.27-2.36; P < 0.001). The marginal APOE effect was driven by e4 homozygotes (HR = 2.58; 95% CI: 1.05-6.35; P = 0.039) as opposed to e4 heterozygotes (HR = 1.74; 95% CI: 0.87-3.49; P = 0.12). The genetic risk for late-onset Alzheimer's disease unfolds in a disease stage-dependent fashion. A better understanding of the interplay between disease stage and genetic risk can lead to a more mechanistic understanding of the transition between ATN stages and a better understanding of the molecular processes leading to Alzheimer's disease, in addition to opening therapeutic windows for targeted interventions.
Assuntos
Doença de Alzheimer , Predisposição Genética para Doença , Proteínas tau , Humanos , Doença de Alzheimer/genética , Masculino , Feminino , Idoso , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/genética , Predisposição Genética para Doença/genética , Progressão da Doença , Biomarcadores/líquido cefalorraquidiano , Idoso de 80 Anos ou mais , Apolipoproteínas E/genética , Tomografia por Emissão de Pósitrons , Estudo de Associação Genômica Ampla , Herança Multifatorial/genética , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Pessoa de Meia-Idade , Estudos de CoortesRESUMO
BACKGROUND: Idiopathic pulmonary fibrosis (IPF) with coexistent emphysema, termed combined pulmonary fibrosis and emphysema (CPFE) may associate with reduced forced vital capacity (FVC) declines compared to non-CPFE IPF patients. We examined associations between mortality and functional measures of disease progression in two IPF cohorts. METHODS: Visual emphysema presence (>0% emphysema) scored on computed tomography identified CPFE patients (CPFE/non-CPFE: derivation cohort n=317/n=183, replication cohort n=358/n=152), who were subgrouped using 10% or 15% visual emphysema thresholds, and an unsupervised machine-learning model considering emphysema and interstitial lung disease extents. Baseline characteristics, 1-year relative FVC and diffusing capacity of the lung for carbon monoxide (D LCO) decline (linear mixed-effects models), and their associations with mortality (multivariable Cox regression models) were compared across non-CPFE and CPFE subgroups. RESULTS: In both IPF cohorts, CPFE patients with ≥10% emphysema had a greater smoking history and lower baseline D LCO compared to CPFE patients with <10% emphysema. Using multivariable Cox regression analyses in patients with ≥10% emphysema, 1-year D LCO decline showed stronger mortality associations than 1-year FVC decline. Results were maintained in patients suitable for therapeutic IPF trials and in subjects subgrouped by ≥15% emphysema and using unsupervised machine learning. Importantly, the unsupervised machine-learning approach identified CPFE patients in whom FVC decline did not associate strongly with mortality. In non-CPFE IPF patients, 1-year FVC declines ≥5% and ≥10% showed strong mortality associations. CONCLUSION: When assessing disease progression in IPF, D LCO decline should be considered in patients with ≥10% emphysema and a ≥5% 1-year relative FVC decline threshold considered in non-CPFE IPF patients.
Assuntos
Enfisema , Fibrose Pulmonar Idiopática , Enfisema Pulmonar , Humanos , Enfisema Pulmonar/complicações , Pulmão , Fibrose , Enfisema/complicações , Progressão da Doença , Estudos RetrospectivosRESUMO
Amyloid-ß is thought to facilitate the spread of tau throughout the neocortex in Alzheimer's disease, though how this occurs is not well understood. This is because of the spatial discordance between amyloid-ß, which accumulates in the neocortex, and tau, which accumulates in the medial temporal lobe during ageing. There is evidence that in some cases amyloid-ß-independent tau spreads beyond the medial temporal lobe where it may interact with neocortical amyloid-ß. This suggests that there may be multiple distinct spatiotemporal subtypes of Alzheimer's-related protein aggregation, with potentially different demographic and genetic risk profiles. We investigated this hypothesis, applying data-driven disease progression subtyping models to post-mortem neuropathology and in vivo PET-based measures from two large observational studies: the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the Religious Orders Study and Rush Memory and Aging Project (ROSMAP). We consistently identified 'amyloid-first' and 'tau-first' subtypes using cross-sectional information from both studies. In the amyloid-first subtype, extensive neocortical amyloid-ß precedes the spread of tau beyond the medial temporal lobe, while in the tau-first subtype, mild tau accumulates in medial temporal and neocortical areas prior to interacting with amyloid-ß. As expected, we found a higher prevalence of the amyloid-first subtype among apolipoprotein E (APOE) ε4 allele carriers while the tau-first subtype was more common among APOE ε4 non-carriers. Within tau-first APOE ε4 carriers, we found an increased rate of amyloid-ß accumulation (via longitudinal amyloid PET), suggesting that this rare group may belong within the Alzheimer's disease continuum. We also found that tau-first APOE ε4 carriers had several fewer years of education than other groups, suggesting a role for modifiable risk factors in facilitating amyloid-ß-independent tau. Tau-first APOE ε4 non-carriers, in contrast, recapitulated many of the features of primary age-related tauopathy. The rate of longitudinal amyloid-ß and tau accumulation (both measured via PET) within this group did not differ from normal ageing, supporting the distinction of primary age-related tauopathy from Alzheimer's disease. We also found reduced longitudinal subtype consistency within tau-first APOE ε4 non-carriers, suggesting additional heterogeneity within this group. Our findings support the idea that amyloid-ß and tau may begin as independent processes in spatially disconnected regions, with widespread neocortical tau resulting from the local interaction of amyloid-ß and tau. The site of this interaction may be subtype-dependent: medial temporal lobe in amyloid-first, neocortex in tau-first. These insights into the dynamics of amyloid-ß and tau may inform research and clinical trials that target these pathologies.
Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Apolipoproteína E4/genética , Proteínas tau/metabolismo , Estudos Transversais , Peptídeos beta-Amiloides/metabolismo , Amiloide , Tomografia por Emissão de PósitronsRESUMO
TAR DNA-binding protein-43 (TDP-43) accumulation is the primary pathology underlying several neurodegenerative diseases. Charting the progression and heterogeneity of TDP-43 accumulation is necessary to better characterize TDP-43 proteinopathies, but current TDP-43 staging systems are heuristic and assume each syndrome is homogeneous. Here, we use data-driven disease progression modelling to derive a fine-grained empirical staging system for the classification and differentiation of frontotemporal lobar degeneration due to TDP-43 (FTLD-TDP, n = 126), amyotrophic lateral sclerosis (ALS, n = 141) and limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) with and without Alzheimer's disease (n = 304). The data-driven staging of ALS and FTLD-TDP complement and extend previously described human-defined staging schema for ALS and behavioural variant frontotemporal dementia. In LATE-NC individuals, progression along data-driven stages was positively associated with age, but negatively associated with age in individuals with FTLD-TDP. Using only regional TDP-43 severity, our data driven model distinguished individuals diagnosed with ALS, FTLD-TDP or LATE-NC with a cross-validated accuracy of 85.9%, with misclassifications associated with mixed pathological diagnosis, age and genetic mutations. Adding age and SuStaIn stage to this model increased accuracy to 92.3%. Our model differentiates LATE-NC from FTLD-TDP, though some overlap was observed between late-stage LATE-NC and early-stage FTLD-TDP. We further tested for the presence of subtypes with distinct regional TDP-43 progression patterns within each diagnostic group, identifying two distinct cortical-predominant and brainstem-predominant subtypes within FTLD-TDP and a further two subcortical-predominant and corticolimbic-predominant subtypes within ALS. The FTLD-TDP subtypes exhibited differing proportions of TDP-43 type, while there was a trend for age differing between ALS subtypes. Interestingly, a negative relationship between age and SuStaIn stage was seen in the brainstem/subcortical-predominant subtype of each proteinopathy. No subtypes were observed for the LATE-NC group, despite aggregating individuals with and without Alzheimer's disease and a larger sample size for this group. Overall, we provide an empirical pathological TDP-43 staging system for ALS, FTLD-TDP and LATE-NC, which yielded accurate classification. We further demonstrate that there is substantial heterogeneity amongst ALS and FTLD-TDP progression patterns that warrants further investigation in larger cross-cohort studies.
Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Proteinopatias TDP-43 , Humanos , Esclerose Lateral Amiotrófica/genética , Demência Frontotemporal/patologia , Doença de Alzheimer/patologia , Proteinopatias TDP-43/patologia , Degeneração Lobar Frontotemporal/patologia , Proteínas de Ligação a DNA/genéticaRESUMO
Artificial intelligence (AI)-based tools are widely employed, but their use for diagnosis and prognosis of neurological disorders is still evolving. Here we analyse a cross-sectional multicentre structural MRI dataset of 696 people with epilepsy and 118 control subjects. We use an innovative machine-learning algorithm, Subtype and Stage Inference, to develop a novel data-driven disease taxonomy, whereby epilepsy subtypes correspond to distinct patterns of spatiotemporal progression of brain atrophy.In a discovery cohort of 814 individuals, we identify two subtypes common to focal and idiopathic generalized epilepsies, characterized by progression of grey matter atrophy driven by the cortex or the basal ganglia. A third subtype, only detected in focal epilepsies, was characterized by hippocampal atrophy. We corroborate external validity via an independent cohort of 254 people and confirm that the basal ganglia subtype is associated with the most severe epilepsy.Our findings suggest fundamental processes underlying the progression of epilepsy-related brain atrophy. We deliver a novel MRI- and AI-guided epilepsy taxonomy, which could be used for individualized prognostics and targeted therapeutics.
Assuntos
Encéfalo , Epilepsia , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Inteligência Artificial , Estudos Transversais , Imageamento por Ressonância Magnética , Epilepsia/diagnóstico por imagem , Epilepsia/patologia , Atrofia/patologiaRESUMO
INTRODUCTION: This work aimed to establish the largest UK and Ireland consensus on myopia management in children and young people (CYP). METHODS: A modified Delphi consensus was conducted with a panel of 34 optometrists and ophthalmologists with expertise in myopia management. RESULTS: Two rounds of voting took place and 131 statements were agreed, including that interventions should be discussed with parents/carers of all CYP who develop myopia before the age of 13 years, a recommendation for interventions to be publicly funded for those at risk of fast progression and high myopia, that intervention selection should take into account the CYP's hobbies and lifestyle and that additional training for eye care professionals should be available from non-commercial sources. Topics for which published evidence is limited or lacking were areas of weaker or no consensus. Modern myopia management contact and spectacles are suitable first-line treatments. The role and provision of low-concentration atropine needs to be reviewed once marketing authorisations and funding decisions are in place. There is some evidence that a combination of low-concentration atropine with an optical intervention can have an additive effect; further research is needed. Once an intervention is started, best practice is to monitor non-cycloplegic axial length 6 monthly. CONCLUSION: Research is needed to identify those at risk of progression, the long-term effectiveness of individual and combined interventions, and when to discontinue treatment when myopia has stabilised. As further evidence continues to emerge, this consensus work will be repeated to ensure it remains relevant.
RESUMO
INTRODUCTION: In amyloid-positive individuals, disease-related biomarker heterogeneity is understudied. METHODS: We used Subtype and Stage Inference (SuStaIn) to identify data-driven subtypes among cerebrospinal fluid (CSF) amyloid beta (1-42)-positive individuals from the Alzheimer's Disease Neuroimaging Initiative (ADNIGO/2 [n = 376]). Variables included: CSF phosphorylated tau (p-tau181), hippocampal and whole-brain volume, logical memory (LM), composite Trail Making Test score, and white matter hyperintensity (WMH) volumes. CSF amyloid-negative, apolipoprotein E ε4 non-carrier cognitively unimpaired controls (n = 86) were used to calculate z scores. RESULTS: One subtype (n = 145) had early LM changes, with later p-tau and WMH changes. A second subtype (n = 88) had early WMH changes, were older, and more hypertensive. A third subtype (n = 100) had early p-tau changes, and reflected typical Alzheimer's disease. Some amyloid positive (n = 43) individuals were similar to the amyloid-negative group. DISCUSSION: This work identified heterogeneity in individuals who are conventionally considered homogeneous, which is likely driven by co-pathologies including cerebrovascular disease. HIGHLIGHTS: Data-driven modeling identified marker heterogeneity in amyloid-positive individuals. Heterogeneity reflected Alzheimer's disease-like, vascular-like, and mixed pathology presentations. Some amyloid-positive individuals were more similar to amyloid-negative controls. Vascular pathology plays a key role in understanding heterogeneity in those on the amyloid pathway.
RESUMO
Dementia is one of the most debilitating aspects of Parkinson's disease. There are no validated biomarkers that can track Parkinson's disease progression, nor accurately identify patients who will develop dementia and when. Understanding the sequence of observable changes in Parkinson's disease in people at elevated risk for developing dementia could provide an integrated biomarker for identifying and managing individuals who will develop Parkinson's dementia. We aimed to estimate the sequence of clinical and neurodegeneration events, and variability in this sequence, using data-driven statistical modelling in two separate Parkinson's cohorts, focusing on patients at elevated risk for dementia due to their age at symptom onset. We updated a novel version of an event-based model that has only recently been extended to cope naturally with clinical data, enabling its application in Parkinson's disease for the first time. The observational cohorts included healthy control subjects and patients with Parkinson's disease, of whom those diagnosed at age 65 or older were classified as having high risk of dementia. The model estimates that Parkinson's progression in patients at elevated risk for dementia starts with classic prodromal features of Parkinson's disease (olfaction, sleep), followed by early deficits in visual cognition and increased brain iron content, followed later by a less certain ordering of neurodegeneration in the substantia nigra and cortex, neuropsychological cognitive deficits, retinal thinning in dopamine layers, and further deficits in visual cognition. Importantly, we also characterize variation in the sequence. We found consistent, cross-validated results within cohorts, and agreement between cohorts on the subset of features available in both cohorts. Our sequencing results add powerful support to the increasing body of evidence suggesting that visual processing specifically is affected early in patients with Parkinson's disease at elevated risk of dementia. This opens a route to earlier and more precise detection, as well as a more detailed understanding of the pathological mechanisms underpinning Parkinson's dementia.
Assuntos
Demência/etiologia , Demência/fisiopatologia , Modelos Neurológicos , Doença de Parkinson/fisiopatologia , Idade de Início , Idoso , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Degeneração Neural/etiologia , Degeneração Neural/fisiopatologia , Doença de Parkinson/complicaçõesRESUMO
Rationale: The decades-long progression of chronic obstructive pulmonary disease (COPD) renders identifying different trajectories of disease progression challenging.Objectives: To identify subtypes of patients with COPD with distinct longitudinal progression patterns using a novel machine-learning tool called "Subtype and Stage Inference" (SuStaIn) and to evaluate the utility of SuStaIn for patient stratification in COPD.Methods: We applied SuStaIn to cross-sectional computed tomography imaging markers in 3,698 Global Initiative for Chronic Obstructive Lung Disease (GOLD) 1-4 patients and 3,479 controls from the COPDGene (COPD Genetic Epidemiology) study to identify subtypes of patients with COPD. We confirmed the identified subtypes and progression patterns using ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints) data. We assessed the utility of SuStaIn for patient stratification by comparing SuStaIn subtypes and stages at baseline with longitudinal follow-up data.Measurements and Main Results: We identified two trajectories of disease progression in COPD: a "TissueâAirway" subtype (n = 2,354, 70.4%), in which small airway dysfunction and emphysema precede large airway wall abnormalities, and an "AirwayâTissue" subtype (n = 988, 29.6%), in which large airway wall abnormalities precede emphysema and small airway dysfunction. Subtypes were reproducible in ECLIPSE. Baseline stage in both subtypes correlated with future FEV1/FVC decline (r = -0.16 [P < 0.001] in the TissueâAirway group; r = -0.14 [P = 0.011] in the AirwayâTissue group). SuStaIn placed 30% of smokers with normal lung function at elevated stages, suggesting imaging changes consistent with early COPD. Individuals with early changes were 2.5 times more likely to meet COPD diagnostic criteria at follow-up.Conclusions: We demonstrate two distinct patterns of disease progression in COPD using SuStaIn, likely representing different endotypes. One third of healthy smokers have detectable imaging changes, suggesting a new biomarker of "early COPD."
Assuntos
Progressão da Doença , Modelos Teóricos , Doença Pulmonar Obstrutiva Crônica/classificação , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Sporadic Creutzfeldt-Jakob disease (sCJD) is a transmissible brain proteinopathy. Five main clinicopathological subtypes (sCJD-MM(V)1, -MM(V)2C, -MV2K, -VV1, and -VV2) are currently distinguished. Histopathological evidence suggests that the localisation of prion aggregates and spongiform lesions varies among subtypes. Establishing whether there is an initial site with detectable imaging abnormalities (epicentre) and an order of lesion propagation would be informative for disease early diagnosis, patient staging, management and recruitment in clinical trials. Diffusion magnetic resonance imaging (MRI) is the most-used and most-sensitive test to detect spongiform degeneration. This study was designed to identify, in vivo and for the first time, subtype-dependent epicentre and lesion propagation in the brain using diffusion-weighted images (DWI), in the largest known cross-sectional dataset of autopsy-proven subjects with sCJD. We estimate lesion propagation by cross-sectional DWI using event-based modelling, a well-established data-driven technique. DWI abnormalities of 594 autopsy-diagnosed subjects (448 patients with sCJD) were scored in 12 brain regions by 1 neuroradiologist blind to the diagnosis. We used the event-based model to reconstruct sequential orderings of lesion propagation in each of five pure subtypes. Follow-up data from 151 patients validated the estimated sequences. Results showed that epicentre and ordering of lesion propagation are subtype specific. The two most common subtypes (-MM1 and -VV2) showed opposite ordering of DWI abnormality appearance: from the neocortex to subcortical regions, and vice versa, respectively. The precuneus was the most likely epicentre also in -MM2 and -VV1 although at variance with -MM1, abnormal signal was also detected early in cingulate and insular cortices. The caudal-rostral sequence of lesion propagation that characterises -VV2 was replicated in -MV2K. Combined, these data-driven models provide unprecedented dynamic insights into subtype-specific epicentre at onset and propagation of the pathologic process, which may also enhance early diagnosis and enable disease staging in sCJD.
Assuntos
Síndrome de Creutzfeldt-Jakob/diagnóstico por imagem , Síndrome de Creutzfeldt-Jakob/patologia , Proteínas Priônicas/metabolismo , Adulto , Idoso , Imagem de Difusão por Ressonância Magnética/métodos , Diagnóstico Precoce , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Posterior cortical atrophy is a clinico-radiological syndrome characterized by progressive decline in visual processing and atrophy of posterior brain regions. With the majority of cases attributable to Alzheimer's disease and recent evidence for genetic risk factors specifically related to posterior cortical atrophy, the syndrome can provide important insights into selective vulnerability and phenotypic diversity. The present study describes the first major longitudinal investigation of posterior cortical atrophy disease progression. Three hundred and sixty-one individuals (117 posterior cortical atrophy, 106 typical Alzheimer's disease, 138 controls) fulfilling consensus criteria for posterior cortical atrophy-pure and typical Alzheimer's disease were recruited from three centres in the UK, Spain and USA. Participants underwent up to six annual assessments involving MRI scans and neuropsychological testing. We constructed longitudinal trajectories of regional brain volumes within posterior cortical atrophy and typical Alzheimer's disease using differential equation models. We compared and contrasted the order in which regional brain volumes become abnormal within posterior cortical atrophy and typical Alzheimer's disease using event-based models. We also examined trajectories of cognitive decline and the order in which different cognitive tests show abnormality using the same models. Temporally aligned trajectories for eight regions of interest revealed distinct (P < 0.002) patterns of progression in posterior cortical atrophy and typical Alzheimer's disease. Patients with posterior cortical atrophy showed early occipital and parietal atrophy, with subsequent higher rates of temporal atrophy and ventricular expansion leading to tissue loss of comparable extent later. Hippocampal, entorhinal and frontal regions underwent a lower rate of change and never approached the extent of posterior cortical involvement. Patients with typical Alzheimer's disease showed early hippocampal atrophy, with subsequent higher rates of temporal atrophy and ventricular expansion. Cognitive models showed tests sensitive to visuospatial dysfunction declined earlier in posterior cortical atrophy than typical Alzheimer's disease whilst tests sensitive to working memory impairment declined earlier in typical Alzheimer's disease than posterior cortical atrophy. These findings indicate that posterior cortical atrophy and typical Alzheimer's disease have distinct sites of onset and different profiles of spatial and temporal progression. The ordering of disease events both motivates investigation of biological factors underpinning phenotypic heterogeneity, and informs the selection of measures for clinical trials in posterior cortical atrophy.
Assuntos
Doença de Alzheimer/patologia , Córtex Cerebral/patologia , Disfunção Cognitiva/patologia , Doença de Alzheimer/complicações , Estudos de Casos e Controles , Disfunção Cognitiva/complicações , Progressão da Doença , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Testes NeuropsicológicosRESUMO
INTRODUCTION: This work aims to characterize the sequence in which cognitive deficits appear in two dementia syndromes. METHODS: Event-based modeling estimated fine-grained sequences of cognitive decline in clinically-diagnosed posterior cortical atrophy (PCA) ( n=94 ) and typical Alzheimer's disease (tAD) ( n=61 ) at the UCL Dementia Research Centre. Our neuropsychological battery assessed memory, vision, arithmetic, and general cognition. We adapted the event-based model to handle highly non-Gaussian data such as cognitive test scores where ceiling/floor effects are common. RESULTS: Experiments revealed differences and similarities in the fine-grained ordering of cognitive decline in PCA (vision first) and tAD (memory first). Simulation experiments reveal that our new model equals or exceeds performance of the classic event-based model, especially for highly non-Gaussian data. DISCUSSION: Our model recovered realistic, phenotypical progression signatures that may be applied in dementia clinical trials for enrichment, and as a data-driven composite cognitive end-point.
Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Disfunção Cognitiva/patologia , Modelos Teóricos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/psicologia , Atrofia/diagnóstico por imagem , Atrofia/patologia , Atrofia/psicologia , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/psicologia , Progressão da Doença , Humanos , Imageamento por Ressonância MagnéticaRESUMO
Current models of progression in neurodegenerative diseases use neuroimaging measures that are averaged across pre-defined regions of interest (ROIs). Such models are unable to recover fine details of atrophy patterns; they tend to impose an assumption of strong spatial correlation within each ROI and no correlation among ROIs. Such assumptions may be violated by the influence of underlying brain network connectivity on pathology propagation - a strong hypothesis e.g. in Alzheimer's Disease. Here we present DIVE: Data-driven Inference of Vertexwise Evolution. DIVE is an image-based disease progression model with single-vertex resolution, designed to reconstruct long-term patterns of brain pathology from short-term longitudinal data sets. DIVE clusters vertex-wise (i.e. point-wise) biomarker measurements on the cortical surface that have similar temporal dynamics across a patient population, and concurrently estimates an average trajectory of vertex measurements in each cluster. DIVE uniquely outputs a parcellation of the cortex into areas with common progression patterns, leading to a new signature for individual diseases. DIVE further estimates the disease stage and progression speed for every visit of every subject, potentially enhancing stratification for clinical trials or management. On simulated data, DIVE can recover ground truth clusters and their underlying trajectory, provided the average trajectories are sufficiently different between clusters. We demonstrate DIVE on data from two cohorts: the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the Dementia Research Centre (DRC), UK. The DRC cohort contains patients with Posterior Cortical Atrophy (PCA) as well as typical Alzheimer's disease (tAD). DIVE finds similar spatial patterns of atrophy for tAD subjects in the two independent datasets (ADNI and DRC), and further reveals distinct patterns of pathology in different diseases (tAD vs PCA) and for distinct types of biomarker data - cortical thickness from Magnetic Resonance Imaging (MRI) vs amyloid load from Positron Emission Tomography (PET). We demonstrate that DIVE stages have potential clinical relevance, despite being based only on imaging data, by showing that the stages correlate with cognitive test scores. Finally, DIVE can be used to estimate a fine-grained spatial distribution of pathology in the brain using any kind of voxelwise or vertexwise measures including Jacobian compression maps, fractional anisotropy (FA) maps from diffusion tensor imaging (DTI) or other PET measures.
Assuntos
Modelos Neurológicos , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/patologia , Neuroimagem/métodos , Progressão da Doença , HumanosRESUMO
See Li and Donohue (doi:10.1093/brain/awy089) for a scientific commentary on this article.Dominantly-inherited Alzheimer's disease is widely hoped to hold the key to developing interventions for sporadic late onset Alzheimer's disease. We use emerging techniques in generative data-driven disease progression modelling to characterize dominantly-inherited Alzheimer's disease progression with unprecedented resolution, and without relying upon familial estimates of years until symptom onset. We retrospectively analysed biomarker data from the sixth data freeze of the Dominantly Inherited Alzheimer Network observational study, including measures of amyloid proteins and neurofibrillary tangles in the brain, regional brain volumes and cortical thicknesses, brain glucose hypometabolism, and cognitive performance from the Mini-Mental State Examination (all adjusted for age, years of education, sex, and head size, as appropriate). Data included 338 participants with known mutation status (211 mutation carriers in three subtypes: 163 PSEN1, 17 PSEN2, and 31 APP) and a baseline visit (age 19-66; up to four visits each, 1.1 ± 1.9 years in duration; spanning 30 years before, to 21 years after, parental age of symptom onset). We used an event-based model to estimate sequences of biomarker changes from baseline data across disease subtypes (mutation groups), and a differential equation model to estimate biomarker trajectories from longitudinal data (up to 66 mutation carriers, all subtypes combined). The two models concur that biomarker abnormality proceeds as follows: amyloid deposition in cortical then subcortical regions (â¼24 ± 11 years before onset); phosphorylated tau (17 ± 8 years), tau and amyloid-ß changes in cerebrospinal fluid; neurodegeneration first in the putamen and nucleus accumbens (up to 6 ± 2 years); then cognitive decline (7 ± 6 years), cerebral hypometabolism (4 ± 4 years), and further regional neurodegeneration. Our models predicted symptom onset more accurately than predictions that used familial estimates: root mean squared error of 1.35 years versus 5.54 years. The models reveal hidden detail on dominantly-inherited Alzheimer's disease progression, as well as providing data-driven systems for fine-grained patient staging and prediction of symptom onset with great potential utility in clinical trials.
Assuntos
Doença de Alzheimer/complicações , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Encéfalo/diagnóstico por imagem , Transtornos Cognitivos/etiologia , Modelos Biológicos , Adulto , Idoso , Doença de Alzheimer/líquido cefalorraquidiano , Precursor de Proteína beta-Amiloide/genética , Apolipoproteína E4/genética , Biomarcadores/metabolismo , Estudos Transversais , Progressão da Doença , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Neuroimagem/métodos , Presenilina-1/genética , Presenilina-2/genética , Estudos Retrospectivos , Adulto JovemRESUMO
See Stankoff and Louapre (doi:10.1093/brain/awy114) for a scientific commentary on this article.Grey matter atrophy is present from the earliest stages of multiple sclerosis, but its temporal ordering is poorly understood. We aimed to determine the sequence in which grey matter regions become atrophic in multiple sclerosis and its association with disability accumulation. In this longitudinal study, we included 1417 subjects: 253 with clinically isolated syndrome, 708 with relapsing-remitting multiple sclerosis, 128 with secondary-progressive multiple sclerosis, 125 with primary-progressive multiple sclerosis, and 203 healthy control subjects from seven European centres. Subjects underwent repeated MRI (total number of scans 3604); the mean follow-up for patients was 2.41 years (standard deviation = 1.97). Disability was scored using the Expanded Disability Status Scale. We calculated the volume of brain grey matter regions and brainstem using an unbiased within-subject template and used an established data-driven event-based model to determine the sequence of occurrence of atrophy and its uncertainty. We assigned each subject to a specific event-based model stage, based on the number of their atrophic regions. Linear mixed-effects models were used to explore associations between the rate of increase in event-based model stages, and T2 lesion load, disease-modifying treatments, comorbidity, disease duration and disability accumulation. The first regions to become atrophic in patients with clinically isolated syndrome and relapse-onset multiple sclerosis were the posterior cingulate cortex and precuneus, followed by the middle cingulate cortex, brainstem and thalamus. A similar sequence of atrophy was detected in primary-progressive multiple sclerosis with the involvement of the thalamus, cuneus, precuneus, and pallidum, followed by the brainstem and posterior cingulate cortex. The cerebellum, caudate and putamen showed early atrophy in relapse-onset multiple sclerosis and late atrophy in primary-progressive multiple sclerosis. Patients with secondary-progressive multiple sclerosis showed the highest event-based model stage (the highest number of atrophic regions, P < 0.001) at the study entry. All multiple sclerosis phenotypes, but clinically isolated syndrome, showed a faster rate of increase in the event-based model stage than healthy controls. T2 lesion load and disease duration in all patients were associated with increased event-based model stage, but no effects of disease-modifying treatments and comorbidity on event-based model stage were observed. The annualized rate of event-based model stage was associated with the disability accumulation in relapsing-remitting multiple sclerosis, independent of disease duration (P < 0.0001). The data-driven staging of atrophy progression in a large multiple sclerosis sample demonstrates that grey matter atrophy spreads to involve more regions over time. The sequence in which regions become atrophic is reasonably consistent across multiple sclerosis phenotypes. The spread of atrophy was associated with disease duration and with disability accumulation over time in relapsing-remitting multiple sclerosis.
Assuntos
Encéfalo/patologia , Progressão da Doença , Substância Cinzenta/patologia , Esclerose Múltipla/patologia , Adulto , Atrofia/etiologia , Atrofia/patologia , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/complicações , Esclerose Múltipla Crônica Progressiva/patologia , Esclerose Múltipla Recidivante-Remitente/patologia , Estudos RetrospectivosRESUMO
We demonstrate the use of a probabilistic generative model to explore the biomarker changes occurring as Alzheimer's disease develops and progresses. We enhanced the recently introduced event-based model for use with a multi-modal sporadic disease data set. This allows us to determine the sequence in which Alzheimer's disease biomarkers become abnormal without reliance on a priori clinical diagnostic information or explicit biomarker cut points. The model also characterizes the uncertainty in the ordering and provides a natural patient staging system. Two hundred and eighty-five subjects (92 cognitively normal, 129 mild cognitive impairment, 64 Alzheimer's disease) were selected from the Alzheimer's Disease Neuroimaging Initiative with measurements of 14 Alzheimer's disease-related biomarkers including cerebrospinal fluid proteins, regional magnetic resonance imaging brain volume and rates of atrophy measures, and cognitive test scores. We used the event-based model to determine the sequence of biomarker abnormality and its uncertainty in various population subgroups. We used patient stages assigned by the event-based model to discriminate cognitively normal subjects from those with Alzheimer's disease, and predict conversion from mild cognitive impairment to Alzheimer's disease and cognitively normal to mild cognitive impairment. The model predicts that cerebrospinal fluid levels become abnormal first, followed by rates of atrophy, then cognitive test scores, and finally regional brain volumes. In amyloid-positive (cerebrospinal fluid amyloid-ß1-42 < 192 pg/ml) or APOE-positive (one or more APOE4 alleles) subjects, the model predicts with high confidence that the cerebrospinal fluid biomarkers become abnormal in a distinct sequence: amyloid-ß1-42, phosphorylated tau, total tau. However, in the broader population total tau and phosphorylated tau are found to be earlier cerebrospinal fluid markers than amyloid-ß1-42, albeit with more uncertainty. The model's staging system strongly separates cognitively normal and Alzheimer's disease subjects (maximum classification accuracy of 99%), and predicts conversion from mild cognitive impairment to Alzheimer's disease (maximum balanced accuracy of 77% over 3 years), and from cognitively normal to mild cognitive impairment (maximum balanced accuracy of 76% over 5 years). By fitting Cox proportional hazards models, we find that baseline model stage is a significant risk factor for conversion from both mild cognitive impairment to Alzheimer's disease (P = 2.06 × 10(-7)) and cognitively normal to mild cognitive impairment (P = 0.033). The data-driven model we describe supports hypothetical models of biomarker ordering in amyloid-positive and APOE-positive subjects, but suggests that biomarker ordering in the wider population may diverge from this sequence. The model provides useful disease staging information across the full spectrum of disease progression, from cognitively normal to mild cognitive impairment to Alzheimer's disease. This approach has broad application across neurodegenerative disease, providing insights into disease biology, as well as staging and prognostication.
Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Apolipoproteínas E/líquido cefalorraquidiano , Bases de Dados Factuais , Modelos Neurológicos , Fragmentos de Peptídeos/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/psicologia , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/psicologia , Estudos Transversais , Bases de Dados Factuais/tendências , Feminino , Seguimentos , Humanos , Estudos Longitudinais , Masculino , Testes NeuropsicológicosRESUMO
Alzheimer's disease is a highly heterogeneous disease in which different biomarkers are dynamic over different windows of the decades-long pathophysiological processes, and potentially have distinct involvement in different subgroups. Subtype and Stage Inference is an unsupervised learning algorithm that disentangles the phenotypic heterogeneity and temporal progression of disease biomarkers, providing disease insight and quantitative estimates of individual subtype and stage. However, a key limitation of Subtype and Stage Inference is that it requires a complete set of biomarkers for each subject, reducing the number of datapoints available for model fitting and limiting applications of Subtype and Stage Inference to modalities that are widely collected, e.g. volumetric biomarkers derived from structural MRI. In this study, we adapted the Subtype and Stage Inference algorithm to handle missing data, enabling the application of Subtype and Stage Inference to multimodal data (magnetic resonance imaging, positron emission tomography, cerebrospinal fluid and cognitive tests) from 789 participants in the Alzheimer's Disease Neuroimaging Initiative. Missing-data Subtype and Stage Inference identified five subtypes having distinct progression patterns, which we describe by the earliest unique abnormality as 'Typical AD with Early Tau', 'Typical AD with Late Tau', 'Cortical', 'Cognitive' and 'Subcortical'. These new multimodal subtypes were differentially associated with age, years of education, Apolipoprotein E (APOE4) status, white matter hyperintensity burden and the rate of conversion from mild cognitive impairment to Alzheimer's disease, with the 'Cognitive' subtype showing the fastest clinical progression, and the 'Subcortical' subtype the slowest. Overall, we demonstrate that missing-data Subtype and Stage Inference reveals a finer landscape of Alzheimer's disease subtypes, each of which are associated with different risk factors. Missing-data Subtype and Stage Inference has broad utility, enabling the prediction of progression in a much wider set of individuals, rather than being restricted to those with complete data.
RESUMO
Lewy body (LB) diseases, characterized by the aggregation of misfolded α-synuclein proteins, exhibit notable clinical heterogeneity. This may be due to variations in accumulation patterns of LB neuropathology. Here we apply a data-driven disease progression model to regional neuropathological LB density scores from 814 brain donors with Lewy pathology. We describe three inferred trajectories of LB pathology that are characterized by differing clinicopathological presentation and longitudinal antemortem clinical progression. Most donors (81.9%) show earliest pathology in the olfactory bulb, followed by accumulation in either limbic (60.8%) or brainstem (21.1%) regions. The remaining donors (18.1%) initially exhibit abnormalities in brainstem regions. Early limbic pathology is associated with Alzheimer's disease-associated characteristics while early brainstem pathology is associated with progressive motor impairment and substantial LB pathology outside of the brain. Our data provides evidence for heterogeneity in the temporal spread of LB pathology, possibly explaining some of the clinical disparities observed in Lewy body disease.