Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Inorg Chem ; 63(10): 4669-4680, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38394614

RESUMO

Fluorine incorporation into silicate glasses is important for technical fields as diverse as geophysics, extractive metallurgy, reconstructive dentistry, optical devices, and radioactive waste management. In this study, we explored the structural role of fluorine in alkaline alumino-borosilicate glass, with increasing amounts of fluorine up to 25 mol % F while maintaining the glass composition. Glasses were characterized by X-ray diffraction (XRD), 27Al and 19F magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy, and electron probe microanalysis. Results showed that essentially all F was retained; however, between 12 and 15 mol % F (∼3.6 and 4.5 wt % F), excess fluorine partitions to CaF2 and then NaF and Na-Al-F crystalline phases. Even prior to crystallization, there exist five distinct F sites, three of which evolve into crystalline phases. The two persistent glassy sites likely involve [4]Al-F-Ca/Na local structures. We propose a general understanding of the expected chemical shift of 19F NMR in systems containing Al, Ca, and Na.

2.
J Chem Phys ; 160(6)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38341794

RESUMO

The effect of replacing magnesia by alumina on the pressure-dependent structure of amorphous enstatite was investigated by applying in situ high-pressure neutron diffraction with magnesium isotope substitution to glassy (MgO)0.375(Al2O3)0.125(SiO2)0.5. The replacement leads to a factor of 2.4 increase in the rate-of-change of the Mg-O coordination number with pressure, which increases from 4.76(4) at ambient pressure to 6.51(4) at 8.2 GPa, and accompanies a larger probability of magnesium finding bridging oxygen atoms as nearest-neighbors. The Al-O coordination number increases from 4.17(7) to 5.24(8) over the same pressure interval at a rate that increases when the pressure is above ∼3.5 GPa. On recovering the glass to ambient conditions, the Mg-O and Al-O coordination numbers reduce to 5.32(4) and 4.42(6), respectively. The Al-O value is in accordance with the results from solid-state 27Al nuclear magnetic resonance spectroscopy, which show the presence of six-coordinated aluminum species that are absent in the uncompressed material. These findings explain the appearance of distinct pressure-dependent structural transformation regimes in the preparation of permanently densified magnesium aluminosilicate glasses. They also indicate an anomalous minimum in the pressure dependence of the bulk modulus with an onset that suggests a pressure-dependent threshold for transitioning between scratch-resistant and crack-resistant material properties.

3.
Phys Chem Chem Phys ; 25(8): 5967-5988, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36752128

RESUMO

The short-range order of binary zinc borate glasses, xZnO-(1-x)B2O3, has been quantitatively described as a function of ZnO content over the entire glass forming range for the first time, to the best of our knowledge. Multiple spectroscopic techniques (11B NMR, Raman, infrared) reveal detailed structural information regarding borate speciation and network connectivity, and a new model for quantifying the molar fractions of short-range order units is proposed. A consistent thermal history dependence for the fraction of tetrahedral boron (N4) is well accounted for by the proposed model. The model predicts density within 0.1% of experimental values and N4 to within 1% of NMR values. The intermediate character of four-coordinated zinc in borate glasses of this series is evident by the far infrared profiles and the glass transition temperature behavior, which decreases non-monotonically with increasing ZnO content.

4.
J Chem Phys ; 159(6)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37551811

RESUMO

The structure of zinc aluminosilicate glasses with the composition (ZnO)x(Al2O3)y(SiO2)1-x-y, where 0 ≤ x < 1, 0 ≤ y < 1, and x + y < 1, was investigated over a wide composition range by combining neutron and high-energy x-ray diffraction with 27Al magic angle spinning nuclear magnetic resonance spectroscopy. The results were interpreted using an analytical model for the composition-dependent structure in which the zinc ions do not act as network formers. Four-coordinated aluminum atoms were found to be in the majority for all the investigated glasses, with five-coordinated aluminum atoms as the main minority species. Mean Al-O bond distances of 1.764(5) and 1.855(5) Å were obtained for the four- and five-coordinated aluminum atoms, respectively. The coordination environment of zinc was not observed to be invariant. Instead, it is dependent on whether zinc plays a predominantly network-modifying or charge-compensating role and, therefore, varies systematically with the glass composition. The Zn-O coordination number and bond distance were found to be 4.36(9) and 2.00(1) Å, respectively, for the network-modifying role vs 5.96(10) and 2.08(1) Å, respectively, for the charge-compensating role. The more open coordination environment of the charge-compensator is related to an enhanced probability of zinc finding bridging oxygen atoms as nearest-neighbors, reflecting a change in the connectivity of the glass network comprising four-coordinated silicon and aluminum atoms as the alumina content is increased.

5.
J Chem Phys ; 156(6): 064503, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35168361

RESUMO

An analytical model is developed for the composition-dependent structure of the amorphous aluminosilicate materials (M2O)x(Al2O3)y(SiO2)1-x-y and (MO)x(Al2O3)y(SiO2)1-x-y, where 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. The model is based on a simple set of reactions and contains a single adjustable parameter p (0 ≤ p ≤ 1). The latter is found from 27Al solid-state nuclear magnetic resonance (NMR) experiments in the regime where R = x/y ≥ 1, aided by new experiments on the magnesium and zinc aluminosilicate systems. The parameter p decreases linearly as the cation field strength of M+ or M2+ increases, as per the observation previously made for the degree of aluminum avoidance [Lee et al., J. Phys. Chem. C 120, 737 (2016)]. The results indicate that as the cation field strength increases, there are less fourfold coordinated aluminum atoms to contribute toward the glass network, and Al-O-Al bonds become more prevalent in a progressive breakdown of Loewenstein's aluminum avoidance rule. The model gives a good account of the composition-dependent fraction of non-bridging oxygen (NBO) atoms for R ≥ 1, as assessed from the results obtained from solid-state NMR experiments. An extension of the model to (M2O3)x(Al2O3)y(SiO2)1-x-y glasses leads, however, to an excess of NBO atoms, the proportion of which can be reduced by invoking network-forming fivefold coordinated Al atoms and/or oxygen triclusters. The model provides a benchmark for predicting the structure-related properties of aluminosilicate materials and a starting point for predicting the evolution in the structure of these materials under the extreme conditions encountered in the Earth's interior or in processes such as sharp-contact loading.

6.
J Chem Phys ; 157(21): 214503, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36511554

RESUMO

Neutron diffraction with magnesium isotope substitution, high energy x-ray diffraction, and 29Si, 27Al, and 25Mg solid-state nuclear magnetic resonance (NMR) spectroscopy were used to measure the structure of glassy diopside (CaMgSi2O6), enstatite (MgSiO3), and four (MgO)x(Al2O3)y(SiO2)1-x-y glasses, with x = 0.375 or 0.25 along the 50 mol. % silica tie-line (1 - x - y = 0.5) or with x = 0.3 or 0.2 along the 60 mol. % silica tie-line (1 - x - y = 0.6). The bound coherent neutron scattering length of the isotope 25Mg was remeasured, and the value of 3.720(12) fm was obtained from a Rietveld refinement of the powder diffraction patterns measured for crystalline 25MgO. The diffraction results for the glasses show a broad asymmetric distribution of Mg-O nearest-neighbors with a coordination number of 4.40(4) and 4.46(4) for the diopside and enstatite glasses, respectively. As magnesia is replaced by alumina along a tie-line with 50 or 60 mol. % silica, the Mg-O coordination number increases with the weighted bond distance as less Mg2+ ions adopt a network-modifying role and more of these ions adopt a predominantly charge-compensating role. 25Mg magic angle spinning (MAS) NMR results could not resolve the different coordination environments of Mg2+ under the employed field strength (14.1 T) and spinning rate (20 kHz). The results emphasize the power of neutron diffraction with isotope substitution to provide unambiguous site-specific information on the coordination environment of magnesium in disordered materials.

7.
Phys Chem Chem Phys ; 23(30): 16165-16179, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34297029

RESUMO

Understanding the corrosion behavior of glasses in near-neutral environments is crucial for many technologies including glasses for regenerative medicine and nuclear waste immobilization. To maintain consistent pH values throughout experiments in the pH = 7 to 9 regime, buffer solutions containing tris(hydroxymethyl)aminomethane ("Tris", or sometimes called THAM) are recommended in ISO standards 10993-14 and 23317 for evaluating biomaterial degradation and utilized throughout glass dissolution behavior literature-a key advantage being the absence of dissolved alkali/alkaline earth cations (i.e. Na+ or Ca2+) that can convolute experimental results due to solution feedback effects. Although Tris is effective at maintaining the solution pH, it has presented concerns due to the adverse artificial effects it produces while studying glass corrosion, especially in borosilicate glasses. Therefore, many open questions still remain on the topic of borosilicate glass interaction with Tris-based solutions. We have approached this topic by studying the dissolution behavior of a sodium borosilicate glass in a wide range of Tris-based solutions at 65 °C with varied acid identity (Tris-HCl vs. Tris-HNO3), buffer concentration (0.01 M to 0.5 M), and pH (7-9). The results have been discussed in reference to previous studies on this topic and the following conclusions have been made: (i) acid identity in Tris-based solutions does not exhibit a significant impact on the dissolution behavior of borosilicate glasses, (ii) ∼0.1 M Tris-based solutions are ideal for maintaining solution pH in the absence of obvious undesirable solution chemistry effects, and (iii) Tris-boron complexes can form in solution as a result of glass dissolution processes. The complex formation, however, exhibits a distinct temperature-dependence, and requires further study to uncover the precise mechanisms by which Tris-based solutions impact borosilicate glass dissolution behavior.

8.
Phys Chem Chem Phys ; 22(16): 8679-8698, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32270826

RESUMO

The uncontrolled growth of nepheline (NaAlSiO4) crystals during the manufacturing of sodium aluminosilicate glasses via the fusion draw or float techniques and during the vitrification of some of the sodium- and alumina-rich nuclear waste glasses is a well-known problem. The addition of B2O3 to suppress the crystallization in these glasses is well documented in the literature. Another advantage of B2O3 is that it lowers the viscosity of the glass melt and, if incorporated in its trigonal coordination state, will improve the intrinsic damage resistance of the final glass product. Hence, B2O3 has been an integral component of glass compositions for advanced industrial applications and for nuclear waste vitrification. However, one major disadvantage of adding B2O3 to alkali aluminosilicate based glasses is its adverse impact on their chemical durability due to the rapid hydrolysis of B[3,4]-O-B[3,4] bonds in comparison to (Si, Al)-O-(Si, Al) bonds. Therefore, designing a boron-containing alkali aluminosilicate based functional glass with minimal tendency towards crystallization and high chemical durability requires an in-depth fundamental understanding of the mechanism through which B2O3 tends to suppress crystallization in these glasses. There is no current consensus on the fundamental mechanism through which B2O3 tends to suppress nepheline crystallization in these glasses. Based on the mechanisms described and the questions raised in the preceding literature, the present study focuses on addressing the ongoing debate through a detailed structural and thermo-kinetic investigation of glasses designed in the Na2O-Al2O3-B2O3-SiO2 based quaternary system over a broad composition space. Using a combination of Raman and (1D and 2D) nuclear magnetic resonance spectroscopies along with equilibrium and non-equilibrium viscosity, and liquidus temperature measurements, it has been shown that the substitution of Si-O-Al by Si-O-B linkages in the glass structure results in a significant increase in the glass forming ability as well as an increase in the liquidus viscosity (slower diffusivity), thereby suppressing the nepheline crystallization.

9.
Phys Chem Chem Phys ; 22(4): 1881-1896, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31912064

RESUMO

The majority of the literature on glass corrosion focuses on understanding the dissolution kinetics and mechanisms of silicate glass chemistries in the neutral-to-alkaline aqueous regime owing to its relevance in the fields of nuclear waste immobilization and biomaterials. However, understanding the corrosion of silicate-based glass chemistries over a broad composition space in the acidic pH regime is essential for glass packaging and touch screen electronic display industries. A thorough literature review on this topic reveals only a handful of studies that discuss acid corrosion of silicate glasses and their derivatives-these include only a narrow set of silicate-based glass chemistries. Although the current literature successfully explains the dissolution kinetics of glasses based upon classically understood aqueous corrosion mechanisms, more recent advancements in atomic-scale characterization techniques, have enabled a better understanding of reactions taking place directly at the pristine glass-fluid interface which has facilitated the development of a unifying model describing corrosion behavior of silicate glasses. Based on the corrosion mechanisms described and the questions raised in preceding literature, the present study focuses on understanding the corrosion mechanisms governing metaluminous (Na/Al = 1) sodium aluminoborosilicate glasses in acidic environments across a wide composition-space (ranging from SiO2-rich to B2O3-rich compositions), with particular emphasis on understanding the reactions taking place near the glass-fluid interface. Using state-of-the-art characterization techniques including nuclear magnetic resonance (NMR) spectroscopy, Rutherford backscattering, X-ray photoelectron spectroscopy (XPS) and elastic recoil detection analysis (ERDA), it has been shown that stepwise B2O3 substitutions into nepheline (NaAlSiO4) glass, although causing non-linear changes in glass structure network structural features, leads to strikingly linear increases in the forward dissolution rate at pH = 2. While the glasses undergo congruent dissolution in the forward rate regime, the residual rate regime displays evidence of preferential extraction near the glass surface (i.e., enrichment in aluminum content upon corrosion through AlO4→ Al(OH)3 evolution) implying that dissolution-re-precipitation processes may occur at the glass-fluid interface in both B2O3-rich and SiO2-rich glass compositions-albeit with vastly dissimilar reaction kinetics.

10.
J Non Cryst Solids ; 5482020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34135535

RESUMO

Barium disilicate is one of the glass-ceramic systems where internal nucleation and crystallization can occur from quenched glass upon heat treatment without requiring nucleating agents. The structural origin of the nano-clusters formed during low temperature heat treatment is of great interest in gaining a fundamental understanding of nucleation kinetics in silicate glasses. Here, we present experimental investigations on the low temperature heat treatment of barium disilicate (BaO·2SiO2) glass. Several experimental techniques were used to characterize the structural nature of barium disilicate glasses that were heat treated between the glass transition temperature, Tg, and the peak temperature of crystal growth, Tcr. The data show that small amounts of crystallites including BaSi2O5 as well as other higher Ba/Si ratio phases are formed. Moreover, unlike that reported for lower BaO content (BaO<33mol%) barium silicate glass or the analogous Li2O-SiO2 glasses, no clear evidence is observed for liquid/liquid phase separation in barium disilicate glass.

11.
Phys Chem Chem Phys ; 20(23): 15707-15717, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29850688

RESUMO

We investigate the structure, phase separation, glass transition, and crystallization in a mixed network former glass series, i.e., B2O3-Al2O3-SiO2-P2O5 glasses with varying SiO2/B2O3 molar ratio. All the studied glasses exhibit two separate glassy phases: droplet phase (G1) with the size of 50-100 nm and matrix phase (G2), corresponding to a lower calorimetric glass transition temperature (Tg1) and a higher one (Tg2), respectively. Both Tg values decrease linearly with the substitution of B2O3 for SiO2, but the magnitude of the decrease is larger for Tg1. Based on nuclear magnetic resonance and Raman spectroscopy results, we infer that the G1 phase is rich in boroxol rings, while the G2 phase mainly involves the B-O-Si network. Both phases contain BPO4- and AlPO4-like units. Ordered domains occur in G2 upon isothermal and dynamic heating, driven by the structural heterogeneity in the as-prepared glasses. The structural ordering lowers the activation energy of crystal growth, thus promoting partial crystallization of G2. These findings are useful for understanding glass formation and phase separation in mixed network former oxide systems, and for tailoring their properties.

12.
Phys Chem Chem Phys ; 18(43): 29879-29891, 2016 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-27759138

RESUMO

The structure and properties of glass can be modified through compression near the glass transition temperature (Tg), and such modified structure and properties can be maintained at ambient temperature and pressure. However, once the compressed glass undergoes annealing near Tg at ambient pressure, the modified structure and properties will relax. The challenging question is how the property relaxation is correlated with both the local and the medium-range structural relaxation. In this paper, we answer this question by studying the volume (density) and structural relaxation of a sodium borate glass that has first been pressure-quenched from its Tg at 1 GPa, and then annealed at ambient pressure under different temperature-time conditions. Using 11B MAS NMR and Raman spectroscopy, we find that the pressure-induced densification of the glass is accompanied by a conversion of six-membered rings into non-ring trigonal boron (BIII) units, i.e. a structural change in medium-range order, and an increase in the fraction of tetrahedral boron (BIV), i.e. a structural change in short-range order. These pressure-induced structural conversions are reversible during ambient pressure annealing near Tg, but exhibit a dependence on the annealing temperature, e.g. the ring/non-ring BIII ratio stabilizes at different values depending on the applied annealing temperature. We find that conversions between structural units cannot account for the pressure-induced densification, and instead we suggest the packing of structural units as the main densification mechanism.

13.
J Chem Phys ; 142(18): 184503, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25978896

RESUMO

We establish a topological model of alkali borophosphate and calcium borophosphate glasses, which describes the effect of both the network formers and network modifiers on physical properties. We show that the glass transition temperature (Tg), Vickers hardness (HV), liquid fragility (m), and isobaric heat capacity jump at Tg (ΔCp) of these glasses are related to the network topology, which is determined by structure of the glass. Therefore, we also demonstrate that the temperature dependent constraint theory can quantitatively explain the mixed network former effect in borophosphate glasses. The origin of the effect of the type of network modifying oxide on Tg, HV, m, and ΔCp of calcium borophosphate glasses is revealed in terms of the modifying ion sub-network. The same topological principles quantitatively explain the significant differences in physical properties between the alkali and the calcium borophosphate glasses. This work has implications for quantifying structure-property relations in complex glass forming systems containing several types of network forming and modifying oxides.

14.
J Chem Phys ; 143(6): 064510, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26277148

RESUMO

In this work, we investigate the correlations among structure, topology, and properties in a series of sodium phosphosilicate glasses with [SiO2]/[SiO2 + P2O5] ranging from 0 to 1. The network structure is characterized by (29)Si and (31)P magic-angle spinning nuclear magnetic resonance and Raman spectroscopy. The results show the formation of six-fold coordinated silicon species in phosphorous-rich glasses. Based on the structural data, we propose a formation mechanism of the six-fold coordinated silicon, which is used to develop a quantitative structural model for predicting the speciation of the network forming units as a function of chemical composition. The structural model is then used to establish a temperature-dependent constraint description of phosphosilicate glass topology that enables prediction of glass transition temperature, liquid fragility, and indentation hardness. The topological constraint model provides insight into structural origin of the mixed network former effect in phosphosilicate glasses.

15.
Sci Rep ; 12(1): 17687, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271024

RESUMO

Aluminosilicates (AS) are ubiquitous in ceramics, geology, and planetary science, and their glassy forms underpin vital technologies used in displays, waveguides, and lasers. In spite of this, the nonequilibrium behavior of the prototypical AS compound, mullite (40SiO2-60Al2O3, or AS60), is not well understood. By deeply supercooling mullite-composition liquid via aerodynamic levitation, we observe metastable liquid-liquid unmixing that yields a transparent two-phase glass, comprising a nanoscale mixture of AS7 and AS62. Extrapolations from X-ray scattering measurements show the AS7 phase is similar to vitreous SiO2 with a few Al species substituted for Si. The AS62 phase is built from a highly polymerized network of 4-, 5-, and 6-coordinated AlOx polyhedra. Polymerization of the AS62 network and the composite morphology provide essential mechanisms for toughening the glass.

16.
ACS Nano ; 16(6): 9748-9761, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35679120

RESUMO

Simultaneously improving the strength and toughness of materials is a major challenge. Inorganic-polymer hybrids offer the potential to combine mechanical properties of a stiff inorganic glass with a flexible organic polymer. However, the toughening mechanism at the atomic scale remains largely unknown. Based on combined experimental and molecular dynamics simulation results, we find that the deformation and fracture behavior of hybrids are governed by noncovalent intermolecular interactions between polymer and silica networks rather than the breakage of covalent bonds. We then attempt three methods to improve the balance between strength and toughness of hybrids, namely the total inorganic/organic (I/O) weight ratio, the size of silica nanoparticles, and the ratio of -C-O vs -C-C bonds in the polymer chains. Specifically, for a hybrid with matched silica size and I/O ratio, we demonstrate optimized mechanical properties in terms of strength (1.75 MPa at breakage), degree of elongation at the fracture point (31%), toughness (219 kPa), hardness (1.08 MPa), as well as Young's modulus (3.0 MPa). We also demonstrate that this hybrid material shows excellent biocompatibility and ability to support cell attachment as well as proliferation. This supports the possible application of this material as a strong yet tough bone scaffold material.


Assuntos
Polímeros , Dióxido de Silício , Dióxido de Silício/química , Teste de Materiais , Vidro/química , Dureza
17.
Nat Commun ; 12(1): 2026, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795656

RESUMO

For over 40 years, measurements of the nucleation rates in a large number of silicate glasses have indicated a breakdown in the Classical Nucleation Theory at temperatures below that of the peak nucleation rate. The data show that instead of steadily decreasing with decreasing temperature, the work of critical cluster formation enters a plateau and even starts to increase. Many explanations have been offered to explain this anomaly, but none have provided a satisfactory answer. We present an experimental approach to demonstrate explicitly for the example of a 5BaO ∙ 8SiO2 glass that the anomaly is not a real phenomenon, but instead an artifact arising from an insufficient heating time at low temperatures. Heating times much longer than previously used at a temperature 50 K below the peak nucleation rate temperature give results that are consistent with the predictions of the Classical Nucleation Theory. These results raise the question of whether the claimed anomaly is also an artifact in other glasses.

18.
J Mater Chem B ; 9(21): 4400-4410, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34019617

RESUMO

In some biomaterial applications, the device needs to resist cyclic loading. Recently, self-healing hybrid systems with interpenetrating network of organic and inorganic components have been discovered. In this work, we clarify the structure-mechanical property relations in a new series of silica-poly(tetrahydropyran)-poly(ε-caprolactone) (SiO2-PTHP-PCL) materials, which were prepared through a three-step synthesis, including one-pot cationic ring-opening polymerization, sol-gel reaction, and polymer-silica cross condensation. We applied THP as the main constituent of the organic phase and achieved successful polymerization under mild conditions, while the hybrid structures were controlled by the degree of silica-crosslinking and the organic/inorganic ratio. The thermal stabilities, densities, Young's modulus as well as hardness could also be regulated through such control. Notably, we find that the hybrid materials with organic polymer content above 73% are able to self-heal induced damages, including under body temperature conditions and the mechanical properties of the self-healed material are similar to those of the fresh samples. We ascribe this primarily to the reversible intermolecular interactions and hydrogen bonding among the polymer chains. Finally, we discover that the PTHP-SiO2 networks are stable in a simulated bio-environment although PCL underwent biodegradation. The present structural control approach could lead to the design of tailored functional hybrid materials, with potential applications within areas such as soft robotics and bone regeneration.


Assuntos
Poliésteres/química , Piranos/química , Dióxido de Silício/química , Cromatografia em Camada Fina , Módulo de Elasticidade , Espectroscopia de Ressonância Magnética/métodos , Estrutura Molecular , Espectrofotometria Infravermelho/métodos , Termogravimetria , Difração de Raios X
19.
Sci Rep ; 11(1): 69, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420156

RESUMO

Nucleation is generally viewed as a structural fluctuation that passes a critical size to eventually become a stable emerging new phase. However, this concept leaves out many details, such as changes in cluster composition and competing pathways to the new phase. In this work, both experimental and computer modeling studies are used to understand the cluster composition and pathways. Monte Carlo and molecular dynamics approaches are used to analyze the thermodynamic and kinetic contributions to the nucleation landscape in barium silicate glasses. Experimental techniques examine the resulting polycrystals that form. Both the modeling and experimental data indicate that a silica rich core plays a dominant role in the nucleation process.

20.
J Phys Chem B ; 124(45): 10292-10299, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33143414

RESUMO

The mixed alkali effect in glasses is the deviation from linear property changes when alkali cations are mixed. The extent of this effect and its structural origin remain topics of interest. In this work, we use a statistical mechanics approach to predict the composition-structure relationship in mixed modifier Na2O-K2O-SiO2 glasses. This is achieved by accounting for the enthalpy between each pairwise alkali ion and silicate unit interaction. The initial enthalpy parameters are obtained based on experimental structural data for binary Na2O-SiO2 and K2O-SiO2 glasses, which can be transferred to predict the short-range order structure of mixed modifier glasses without additional free parameters. To this end, we have performed 29Si magic angle spinning NMR spectroscopy measurements on y(xNa2O-(1 - x)K2O)-(100 - y)SiO2 glasses with x = 0, 0.25, 0.5, 0.75, and 1 and y = 34, 42, and 50. Good agreement between experimental data and model predictions are observed. Finally, we use this information to discuss the relative entropic and enthalpic contributions to the mixed modifier effect in silicate glass structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA