RESUMO
Malaria is caused by Plasmodium species transmitted by Anopheles mosquitoes. Following a mosquito bite, Plasmodium sporozoites migrate from skin to liver, where extensive replication occurs, emerging later as merozoites that can infect red blood cells and cause symptoms of disease. As liver tissue-resident memory T cells (Trm cells) have recently been shown to control liver-stage infections, we embarked on a messenger RNA (mRNA)-based vaccine strategy to induce liver Trm cells to prevent malaria. Although a standard mRNA vaccine was unable to generate liver Trm or protect against challenge with Plasmodium berghei sporozoites in mice, addition of an agonist that recruits T cell help from type I natural killer T cells under mRNA-vaccination conditions resulted in significant generation of liver Trm cells and effective protection. Moreover, whereas previous exposure of mice to blood-stage infection impaired traditional vaccines based on attenuated sporozoites, mRNA vaccination was unaffected, underlining the potential for such a rational mRNA-based strategy in malaria-endemic regions.
Assuntos
Vacinas Antimaláricas , Malária , Animais , Camundongos , Células T de Memória , Malária/prevenção & controle , Fígado , Plasmodium berghei/genética , Linfócitos T CD8-PositivosRESUMO
Bromodomain-containing protein 4 (BRD4) is a cancer therapeutic target in ongoing clinical trials disrupting primarily BRD4-regulated transcription programs. The role of BRD4 in cancer has been attributed mainly to the abundant long isoform (BRD4-L). Here we show, by isoform-specific knockdown and endogenous protein detection, along with transgene expression, the less abundant BRD4 short isoform (BRD4-S) is oncogenic while BRD4-L is tumor-suppressive in breast cancer cell proliferation and migration, as well as mammary tumor formation and metastasis. Through integrated RNA-seq, genome-wide ChIP-seq, and CUT&RUN association profiling, we identify the Engrailed-1 (EN1) homeobox transcription factor as a key BRD4-S coregulator, particularly in triple-negative breast cancer. BRD4-S and EN1 comodulate the extracellular matrix (ECM)-associated matrisome network, including type II cystatin gene cluster, mucin 5, and cathepsin loci, via enhancer regulation of cancer-associated genes and pathways. Our work highlights the importance of targeted therapies for the oncogenic, but not tumor-suppressive, activity of BRD4.
Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Genes Homeobox , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Invasividade Neoplásica , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas/antagonistas & inibidores , Proteínas/metabolismo , Transcrição Gênica/genética , Neoplasias de Mama Triplo Negativas/genéticaRESUMO
In only a few decades, lithium-ion batteries have revolutionized technologies, enabling the proliferation of portable devices and electric vehicles1, with substantial benefits for society. However, the rapid growth in technology has highlighted the ethical and environmental challenges of mining lithium, cobalt and other mineral ore resources, and the issues associated with the safe usage and non-hazardous disposal of batteries2. Only a small fraction of lithium-ion batteries are recycled, further exacerbating global material supply of strategic elements3-5. A potential alternative is to use organic-based redox-active materials6-8 to develop rechargeable batteries that originate from ethically sourced, sustainable materials and enable on-demand deconstruction and reconstruction. Making such batteries is challenging because the active materials must be stable during operation but degradable at end of life. Further, the degradation products should be either environmentally benign or recyclable for reconstruction into a new battery. Here we demonstrate a metal-free, polypeptide-based battery, in which viologens and nitroxide radicals are incorporated as redox-active groups along polypeptide backbones to function as anode and cathode materials, respectively. These redox-active polypeptides perform as active materials that are stable during battery operation and subsequently degrade on demand in acidic conditions to generate amino acids, other building blocks and degradation products. Such a polypeptide-based battery is a first step to addressing the need for alternative chemistries for green and sustainable batteries in a future circular economy.
Assuntos
Fontes de Energia Elétrica , Eletroquímica , Peptídeos/química , Animais , Bovinos , Linhagem Celular , Sobrevivência Celular , Óxidos N-Cíclicos/química , Camundongos , Osteoblastos/citologia , Oxirredução , Peptídeos/síntese química , Desenvolvimento Sustentável , Viologênios/químicaRESUMO
Nuclear actin-based movements support DNA double-strand break (DSB) repair. However, molecular determinants that promote filamentous actin (F-actin) formation on the damaged chromatin remain undefined. Here we describe the DYRK1A kinase as a nuclear activity that promotes local F-actin assembly to support DSB mobility and repair, accomplished in part by its targeting of actin nucleator spire homolog 1 (Spir1). Indeed, perturbing DYRK1A-dependent phosphorylation of S482 mis-regulated Spir1 accumulation at damaged-modified chromatin, and led to compromised DSB-associated actin polymerization and attenuated DNA repair. Our findings uncover a role of the DYRK1A-Spir1 axis in nuclear actin dynamics during early DSB responses, and highlight the intricate details of nuclear cytoskeletal network in DSB repair and genome stability maintenance.
Assuntos
Actinas , Núcleo Celular , Cromatina , Quebras de DNA de Cadeia Dupla , Quinases Dyrk , Proteínas dos Microfilamentos , Proteínas Nucleares , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Humanos , Actinas/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Reparo do DNA , Quinases Dyrk/genética , Quinases Dyrk/metabolismo , Células HeLa , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismoRESUMO
MESPEUS is a freely accessible database which uses carefully selected metal coordination groups found in metalloprotein structures taken from the Protein Data Bank. The database contains geometrical information of metal sites within proteins, including 40 metal types. In order to completely determine the metal coordination, the symmetry-related units of a given protein structure are taken into account and are generated using the appropriate space group symmetry operations. This permits a more complete description of the metal coordination geometry by including all coordinating atoms. The user-friendly web interface allows users to directly search for a metal site of interest using several useful options, including searching for metal elements, metal-donor distances, coordination number, donor residue group, and structural resolution. These searches can be carried out singly or in combination. The details of a metal site and the metal site(s) in the whole structure can be graphically displayed using the interactive web interface. MESPEUS is automatically updated monthly by synchronizing with the PDB database. An investigation for the Mg-ATP interaction is given to demonstrate how MESPEUS can be used to extract information about metal sites by selecting structure and coordination features. MESPEUS is available at http://mespeus.nchu.edu.tw/.
Assuntos
Metaloproteínas , Metaloproteínas/química , Metais/química , Bases de Dados de Proteínas , Interface Usuário-Computador , InternetRESUMO
Alveolar macrophages (AMs) are sentinels in the airways, where they sense and respond to invading microbes and other stimuli. Unlike macrophages in other locations, AMs can remain responsive to Gram-negative lipopolysaccharides (LPS) after they have responded to LPS in vivo (they do not develop "endotoxin tolerance"), suggesting that the alveolar microenvironment may influence their responses. Although alveolar epithelial cells (AECs) normally limit AMs' innate responses, preventing inflammation induced by harmless antigens in the lung, how AECs influence the innate responses of AMs to infectious agents has been uncertain. Here we report that (1) after exposure to aspirated (intranasal instillation) LPS, AMs increase their responses to TLR agonists and elevate their phagocytic and bactericidal activities in mice; (2) Aspirated LPS pre-exposure increases host resistance to pulmonary infection caused by Gram-negative bacteria and the protection effect lasts for at least 35 days; (3) LPS stimulation of AECs both increases AMs' innate immune responses and prevents AMs from developing tolerance in vitro; (4) Upon LPS stimulation, AMs secreted TNF-α induces AECs to release GM-CSF, which potentiates AMs' response. These experiments have revealed a previously unappreciated role that AECs may play in boosting the innate responses of AMs and promoting resistance to pulmonary infections.
RESUMO
Although alveolar macrophages (AMs) play important roles in preventing and eliminating pulmonary infections, little is known about their regulation in healthy animals. Since exposure to LPS often renders cells hyporesponsive to subsequent LPS exposures ("tolerant"), we tested the hypothesis that LPS produced in the intestine reaches the lungs and stimulates AMs, rendering them tolerant. We found that resting AMs were more likely to be tolerant in mice lacking acyloxyacyl hydrolase (AOAH), the host lipase that degrades and inactivates LPS; isolated Aoah-/- AMs were less responsive to LPS stimulation and less phagocytic than were Aoah+/+ AMs. Upon innate stimulation in the airways, Aoah-/- mice had reduced epithelium- and macrophage-derived chemokine/cytokine production. Aoah-/- mice also developed greater and more prolonged loss of body weight and higher bacterial burdens after pulmonary challenge with Pseudomonas aeruginosa than did wildtype mice. We also found that bloodborne or intrarectally-administered LPS desensitized ("tolerized") AMs while antimicrobial drug treatment that reduced intestinal commensal Gram-negative bacterial abundance largely restored the innate responsiveness of Aoah-/- AMs. Confirming the role of LPS stimulation, the absence of TLR4 prevented Aoah-/- AM tolerance. We conclude that commensal LPSs may stimulate and desensitize (tolerize) alveolar macrophages in a TLR4-dependent manner and compromise pulmonary immunity. By inactivating LPS in the intestine, AOAH promotes antibacterial host defenses in the lung.
Assuntos
Hidrolases de Éster Carboxílico , Macrófagos Alveolares , Animais , Camundongos , Lipopolissacarídeos/toxicidade , Pulmão , Macrófagos Alveolares/imunologia , Receptor 4 Toll-Like , Hidrolases de Éster Carboxílico/metabolismoRESUMO
Urothelial damage and barrier dysfunction emerge as the foremost mechanisms in Hunner-type interstitial cystitis/bladder pain syndrome (HIC). Although treatments aimed at urothelial regeneration and repair have been employed, their therapeutic effectiveness remains limited due to the inadequate understanding of specific cell types involved in damage and the lack of specific molecular targets within these mechanisms. Therefore, we harnessed single-cell RNA sequencing to elucidate the heterogeneity and developmental trajectory of urothelial cells within HIC bladders. Through reclustering, we identified eight distinct clusters of urothelial cells. There was a significant reduction in UPK3A+ umbrella cells and a simultaneous increase in progenitor-like pluripotent cells (PPCs) within the HIC bladder. Pseudotime analysis of the urothelial cells in the HIC bladder revealed that cells faced challenges in differentiating into UPK3A+ umbrella cells, while PPCs exhibited substantial proliferation to compensate for the loss of UPK3A+ umbrella cells. The urothelium in HIC remains unrepaired, despite the substantial proliferation of PPCs. Thus, we propose that inhibiting the pivotal signaling pathways responsible for the injury to UPK3A+ umbrella cells is paramount for restoring the urothelial barrier and alleviating lower urinary tract symptoms in HIC patients. Subsequently, we identified key molecular pathways (TLR3 and NR2F6) associated with the injury of UPK3A+ umbrella cells in HIC urothelium. Finally, we conducted in vitro and in vivo experiments to confirm the potential of the TLR3-NR2F6 axis as a promising therapeutic target for HIC. These findings hold the potential to inhibit urothelial injury, providing promising clues for early diagnosis and functional bladder self-repair strategies for HIC patients. © 2024 The Pathological Society of Great Britain and Ireland.
Assuntos
Cistite Intersticial , Receptor 3 Toll-Like , Urotélio , Animais , Feminino , Humanos , Camundongos , Diferenciação Celular , Proliferação de Células , Cistite Intersticial/patologia , Cistite Intersticial/metabolismo , Cistite Intersticial/genética , Camundongos Endogâmicos C57BL , Transdução de Sinais , Análise de Célula Única , Receptor 3 Toll-Like/metabolismo , Receptor 3 Toll-Like/genética , Bexiga Urinária/patologia , Bexiga Urinária/metabolismo , Urotélio/patologia , Urotélio/metabolismoRESUMO
An engineered SOX17 variant with point mutations within its DNA binding domain termed SOX17FNV is a more potent pluripotency inducer than SOX2, yet the underlying mechanism remains unclear. Although wild-type SOX17 was incapable of inducing pluripotency, SOX17FNV outperformed SOX2 in mouse and human pluripotency reprogramming. In embryonic stem cells, SOX17FNV could replace SOX2 to maintain pluripotency despite considerable sequence differences and upregulated genes expressed in cleavage-stage embryos. Mechanistically, SOX17FNV co-bound OCT4 more cooperatively than SOX2 in the context of the canonical SoxOct DNA element. SOX2, SOX17, and SOX17FNV were all able to bind nucleosome core particles in vitro, which is a prerequisite for pioneer transcription factors. Experiments using purified proteins and in cellular contexts showed that SOX17 variants phase-separated more efficiently than SOX2, suggesting an enhanced ability to self-organise. Systematic deletion analyses showed that the N-terminus of SOX17FNV was dispensable for its reprogramming activity. However, the C-terminus encodes essential domains indicating multivalent interactions that drive transactivation and reprogramming. We defined a minimal SOX17FNV (miniSOX) that can support reprogramming with high activity, reducing the payload of reprogramming cassettes. This study uncovers the mechanisms behind SOX17FNV-induced pluripotency and establishes engineered SOX factors as powerful cell engineering tools.
Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas , Humanos , Camundongos , Animais , Fatores de Transcrição/metabolismo , Células-Tronco Embrionárias/metabolismo , DNA/metabolismo , Mutação Puntual , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Diferenciação Celular/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismoRESUMO
Earlier work has shown that siRNA-mediated reduction of the SUPT4H or SUPT5H proteins, which interact to form the DSIF complex and facilitate transcript elongation by RNA polymerase II (RNAPII), can decrease expression of mutant gene alleles containing nucleotide repeat expansions differentially. Using luminescence and fluorescence assays, we identified chemical compounds that interfere with the SUPT4H-SUPT5H interaction and then investigated their effects on synthesis of mRNA and protein encoded by mutant alleles containing repeat expansions in the huntingtin gene (HTT), which causes the inherited neurodegenerative disorder, Huntington's Disease (HD). Here we report that such chemical interference can differentially affect expression of HTT mutant alleles, and that a prototypical chemical, 6-azauridine (6-AZA), that targets the SUPT4H-SUPT5H interaction can modify the biological response to mutant HTT gene expression. Selective and dose-dependent effects of 6-AZA on expression of HTT alleles containing nucleotide repeat expansions were seen in multiple types of cells cultured in vitro, and in a Drosophila melanogaster animal model for HD. Lowering of mutant HD protein and mitigation of the Drosophila "rough eye" phenotype associated with degeneration of photoreceptor neurons in vivo were observed. Our findings indicate that chemical interference with DSIF complex formation can decrease biochemical and phenotypic effects of nucleotide repeat expansions.
Assuntos
Azauridina , Proteína Huntingtina , Doença de Huntington , Proteínas Mutantes , Mutação , Proteínas Nucleares , Fenótipo , Proteínas Repressoras , Fatores de Elongação da Transcrição , Alelos , Animais , Azauridina/farmacologia , Células Cultivadas , Expansão das Repetições de DNA , Modelos Animais de Doenças , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Proteína Huntingtina/biossíntese , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Medições Luminescentes , Proteínas Mutantes/biossíntese , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Nucleares/metabolismo , Células Fotorreceptoras de Invertebrados/efeitos dos fármacos , Proteínas Repressoras/metabolismo , Fatores de Elongação da Transcrição/metabolismoRESUMO
Background: Chemical modifications on RNA profoundly affect RNA function and regulation. m6A, the most abundant RNA modification in eukaryotes, plays a pivotal role in diverse cellular processes and disease mechanisms. However, its importance is understudied in human CKD samples regarding its influence on pathological mechanisms. Methods: Liquid chromatographytandem mass spectrometry and methylated RNA immunoprecipitation sequencing were used to examine alterations in m6A levels and patterns in CKD samples. Overexpression of the m6A writer METTL3 in cultured kidney tubular cells was performed to confirm the effect of m6A in tubular cells and explore the biological functions of m6A modification on target genes. In addition, tubule-specific deletion of Mettl3 (Ksp-Cre Mettl3f/f) mice and antisense oligonucleotides inhibiting Mettl3 expression were used to reduce m6A modification in an animal kidney disease model. Results: By examining 127 human CKD samples, we observed a significant increase in m6A modification and METTL3 expression in diseased kidneys. Epitranscriptomic analysis unveiled an enrichment of m6A modifications in transcripts associated with the activation of inflammatory signaling pathways, particularly the cyclic guanosine monophosphateAMP synthase (cGAS)-stimulator of IFN genes (STING) pathway. m6A hypermethylation increased mRNA stability in cGAS and STING1 as well as elevated the expression of key proteins within the cGAS-STING pathway. Both the tubule-specific deletion of Mettl3 and the use of antisense oligonucleotides to inhibit Mettl3 expression protected mice from inflammation, reduced cytokine expression, decreased immune cell recruitment, and attenuated kidney fibrosis. Conclusions: Our research revealed heightened METTL3-mediated m6A modification in fibrotic kidneys, particularly enriching the cGAS-STING pathway. This hypermethylation increased mRNA stability for cGAS and STING1, leading to sterile inflammation and fibrosis.
Assuntos
Adenosina , Fibrose , Proteínas de Membrana , Metiltransferases , Nucleotidiltransferases , RNA Mensageiro , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , RNA Mensageiro/metabolismo , Animais , Metiltransferases/metabolismo , Metiltransferases/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Humanos , Transdução de Sinais , Camundongos , Rim/patologia , Rim/metabolismo , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/patologiaRESUMO
BACKGROUND AND AIMS: Vascular smooth muscle cell (VSMC) phenotype switching is a pathological hallmark in various cardiovascular diseases. N4-acetylcytidine (ac4C) catalyzed by N-acetyltransferase 10 (NAT10) is well conserved in the enzymatic modification of ribonucleic acid (RNA). NAT10-mediated ac4C acetylation is involved in various physiological and pathological processes, including cardiac remodelling. However, the biological functions and underlying regulatory mechanisms of mRNA ac4C modifications in vascular diseases remain elusive. METHODS: By combining in-vitro and in-vivo vascular injury models, NAT10 was identified as a crucial protein involved in the promotion of post-injury neointima formation, as well as VSMC phenotype switching. The potential mechanisms of NAT10 in the vascular neointima formation were clarified by RNA sequence (RNA-seq), acetylated mRNA immunoprecipitation sequence (acRIP-seq), and RNA binding protein immunoprecipitation sequence (RIP-seq). RESULTS: NAT10 and ac4C modifications were upregulated in injured human and rodent arteries. Deletion of NAT10 in VSMCs effectively reduced post-injury neointima formation and VSMC phenotype switching. Further RNA-seq, RIP-seq, and acRIP-seq revealed that NAT10, by its ac4C modification, directly interacts with genes, including integrin-ß1 (ITGB1) and collagen type I alpha 2 chain (Col1a2) mRNAs. Taking ITGB1 as one example, it showed that NAT10-mediated ac4C consequently increased ITGB1 mRNA stability and its downstream focal adhesion kinase (FAK) signaling, directly influencing the proliferation of VSMCs and vascular remodelling. The regulation of NAT10 on the VSMC phenotype is of translational significance because the administration of Remodelin, a NAT10 inhibitor, effectively prevents neointima formation by suppressing VSMC proliferation and downregulating ITGB1 expression and deactivating its FAK signaling. CONCLUSIONS: This study reveals that NAT10 promotes vascular remodelling via mRNA ac4C acetylation, which may be a promising therapeutic target against vascular remodelling.
RESUMO
Nicotinamide adenine dinucleotide (NAD) is a pivotal coenzyme, existing in its oxidized form (NAD+) and reduced form (NADH). Both are essential in cellular redox reactions and are implicated in energy production and cancer. Current NADH detection methods often involve complex optical measurements. We propose a miniaturized, on-chip photoelectric sensor array using AlGaN/GaN two-dimensional electron gas (2DEG) photodetectors for NADH quantification. The device exhibits an ultralow dark current and ultrahigh UV light responsivity, enabling sensitive NADH detection. By exploiting the absorbance disparity between NADH and NAD+, our sensor achieves rapid, sensitive detection, surpassing commercial assays. It effectively detects NADH levels in 3D multicellular models, promising cancer screening and monitoring. This sensor platform offers a significant advancement in NADH quantification, with the potential for high-throughput testing and point-of-care diagnostics. Our study presents an efficient approach for NADH sensing, addressing the need for rapid and sensitive detection methods in biomedical research and clinical practice.
RESUMO
5-(3'-Indolyl)oxazole moiety is a privileged heterocyclic scaffold, embedded in many biologically interesting natural products and potential therapeutic agents. Compounds containing this scaffold, whether from natural sources or synthesized, have demonstrated a wide array of biological activities. This has piqued the interest of synthetic chemists, leading to a large number of reported synthetic approaches to 5-(3'-indolyl)oxazole scaffold in recent years. In this review, we comprehensively overviewed the different biological activities and chemical synthetic methods for the 5-(3'-indolyl)oxazole scaffold reported in the literatures from 1963 to 2024. The focus of this study is to highlight the significance of 5-(3'-indolyl)oxazole derivatives as the lead compounds for the lead discovery of anticancer, pesticidal, antimicrobial, antiviral, antioxidant and anti-inflammatory agents, to summarize the synthetic methods for the 5-(3'-indolyl)oxazole scaffold. In addition, the reported mechanism of action of 5-(3'-indolyl)oxazoles and advanced molecules studied in animal models are also reviewed. Furthermore, this review offers perspectives on how 5-(3'-indolyl)oxazole scaffold as a privileged structure might be exploited in the future.
RESUMO
The mitochondrial citrate shuttle, which relies on the solute carrier family 25 member 1 (SLC25A1), plays a pivotal role in transporting citrate from the mitochondria to the cytoplasm. This shuttle supports glycolysis, lipid biosynthesis, and protein acetylation. Previous research has primarily focused on SLC25A1 in pathological models, particularly high-fat diet (HFD)-induced obesity. However, the impact of SLC25A1 inhibition on nutrient metabolism under HFD remains unclear. To address this gap, we used zebrafish (Danio rerio) and Nile tilapia (Oreochromis niloticus) to evaluate the effects of inhibiting Slc25a1. In zebrafish, we administered Slc25a1-specific inhibitors (CTPI-2) for 4 wk, whereas Nile tilapia received intraperitoneal injections of dsRNA to knock down slc25a1b for 7 days. Inhibition of the mitochondrial citrate shuttle effectively protected zebrafish from HFD-induced obesity, hepatic steatosis, and insulin resistance. Of note, glucose tolerance was unaffected. Inhibition of Slc25a1 altered hepatic protein acetylation patterns, with decreased cytoplasmic acetylation and increased mitochondrial acetylation. Under HFD conditions, Slc25a1 inhibition promoted fatty acid oxidation and reduced hepatic triglyceride (TAG) accumulation by deacetylating carnitine palmitoyltransferase 1a (Cpt1a). In addition, Slc25a1 inhibition triggered acetylation-induced inactivation of Pdhe1α, leading to a reduction in glucose oxidative catabolism. This was accompanied by enhanced glucose uptake and storage in zebrafish livers. Furthermore, Slc25a1 inhibition under HFD conditions activated the SIRT1/PGC1α pathway, promoting mitochondrial proliferation and enhancing oxidative phosphorylation for energy production. Our findings provide new insights into the role of nonhistone protein acetylation via the mitochondrial citrate shuttle in the development of hepatic lipid deposition and hyperglycemia caused by HFD.NEW & NOTEWORTHY The mitochondrial citrate shuttle is a crucial physiological process for maintaining metabolic homeostasis. In the present study, we found that inhibition of mitochondrial citrate shuttle (Slc25a1) could alleviate metabolic syndromes induced by high-fat diet (HFD) through remodeling hepatic protein acetylation modification. Briefly, Slc25a1 inhibition reduces hepatic triglyceride deposition by deacetylating Cpt1a and reduces glucose oxidative catabolism by acetylating Pdhe1α. Our study provides new insights into the treatment of diet-induced metabolic syndromes.
Assuntos
Ácido Cítrico , Dieta Hiperlipídica , Peixe-Zebra , Animais , Dieta Hiperlipídica/efeitos adversos , Ácido Cítrico/metabolismo , Síndrome Metabólica/metabolismo , Síndrome Metabólica/prevenção & controle , Síndrome Metabólica/genética , Síndrome Metabólica/etiologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Carnitina O-Palmitoiltransferase/metabolismo , Carnitina O-Palmitoiltransferase/genética , Obesidade/metabolismo , Obesidade/prevenção & controle , Obesidade/genética , Obesidade/etiologia , Acetilação , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Resistência à Insulina , Fígado Gorduroso/metabolismo , Fígado Gorduroso/prevenção & controle , Fígado Gorduroso/patologia , Fígado Gorduroso/etiologia , Metabolismo dos Lipídeos/efeitos dos fármacosRESUMO
Oral submucous fibrosis (OSF) is a precancerous condition in the oral cavity, which is closely related to the myofibroblast conversion of buccal mucosal fibroblasts (BMFs) after chronic consumption of areca nut. Emerging evidence suggests pyroptosis, a form of programmed cell death that is mediated by inflammasome, is implicated in persistent myofibroblast activation and fibrosis. Besides, numerous studies have demonstrated the effects of non-coding RNAs on pyroptosis and myofibroblast activities. Herein, we aimed to target key long non-coding RNA PVT1 with natural compound, carvacrol, to alleviate pyroptosis and myofibroblast activation in OSF. We first identified PVT1 was downregulated in the carvacrol-treated fBMFs and then demonstrated that myofibroblast features and expression of pyroptosis makers were all reduced in response to carvacrol treatment. Subsequently, we analysed the expression of PVT1 and found that PVT1 was aberrantly upregulated in OSF specimens and positively correlated with several fibrosis markers. After revealing the suppressive effects of carvacrol on myofibroblast characterisitcs and pyroptosis were mediated by repression of PVT1, we then explored the potential mechanisms. Our data showed that PVT1 may serve as a sponge of microRNA(miR)-20a to mitigate the myofibroblast activation and pyroptosis. Altogether, these findings indicated that the anti-fibrosis effects of carvacrol merit consideration and may be due to the attenuation of pyroptosis and myofibroblast activation by targeting the PVT1/miR-20a axis.
Assuntos
Cimenos , MicroRNAs , Miofibroblastos , Fibrose Oral Submucosa , Piroptose , RNA Longo não Codificante , Fibrose Oral Submucosa/patologia , Fibrose Oral Submucosa/genética , Fibrose Oral Submucosa/metabolismo , Fibrose Oral Submucosa/tratamento farmacológico , Piroptose/efeitos dos fármacos , Piroptose/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Cimenos/farmacologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/patologia , Progressão da Doença , Regulação para Baixo/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacosRESUMO
Haploinsufficiency in retinoic acid induced 1 (RAI1) causes Smith-Magenis syndrome (SMS), a severe neurodevelopmental disorder characterized by neurocognitive deficits and obesity. Currently, curative treatments for SMS do not exist. Here, we take a recombinant adeno-associated virus (rAAV)-clustered regularly interspaced short palindromic repeats activation (CRISPRa) approach to increase expression of the remaining intact Rai1 allele. Building upon our previous work that found the paraventricular nucleus of hypothalamus plays a central role in SMS pathogenesis, we performed paraventricular nucleus of hypothalamus-specific rAAV-CRISPRa therapy by increasing endogenous Rai1 expression in SMS (Rai1±) mice. We found that rAAV-CRISPRa therapy rescues excessive repetitive behavior, delays the onset of obesity, and partially reduces hyperphagia in SMS mice. Our work provides evidence that rAAV-CRISPRa therapy during early adolescence can boost the expression of healthy Rai1 allele and modify disease progression in a mouse model of Smith-Magenis syndrome.
Assuntos
Síndrome de Smith-Magenis , Camundongos , Animais , Síndrome de Smith-Magenis/genética , Síndrome de Smith-Magenis/terapia , Síndrome de Smith-Magenis/metabolismo , Transativadores/genética , Transativadores/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Haploinsuficiência , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Obesidade/genéticaRESUMO
Chondrosarcoma is a malignant bone tumor that emerges from abnormalities in cartilaginous tissue and is related with lung metastases. Nicotinamide phosphoribosyltransferase (NAMPT) is an adipocytokine reported to enhance tumor metastasis. Our results from clinical samples and the Gene Expression Omnibus data set reveal that NAMPT levels are markedly higher in chondrosarcoma patients than in normal individuals. NAMPT stimulation significantly increased lysyl oxidase (LOX) production in chondrosarcoma cells. Additionally, NAMPT increased LOX-dependent cell migration and invasion in chondrosarcoma by suppressing miR-26b-5p generation through the c-Src and Akt signaling pathways. Overexpression of NAMPT promoted chondrosarcoma metastasis to the lung in vivo. Furthermore, knockdown of LOX counteracted NAMPT-facilitated metastasis. Thus, the NAMPT/LOX axis presents a novel target for treating the metastasis of chondrosarcoma.
Assuntos
Neoplasias Ósseas , Movimento Celular , Condrossarcoma , Citocinas , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Nicotinamida Fosforribosiltransferase , Proteína-Lisina 6-Oxidase , Condrossarcoma/genética , Condrossarcoma/patologia , Condrossarcoma/metabolismo , Humanos , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Proteína-Lisina 6-Oxidase/metabolismo , Proteína-Lisina 6-Oxidase/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Citocinas/metabolismo , Citocinas/genética , Transdução de Sinais , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Masculino , Camundongos NusRESUMO
Apramycin is a widely used aminoglycoside antibiotic with applications in veterinary medicine. It is composed of a 4-amino-4-deoxy-d-glucose moiety and the pseudodisaccharide aprosamine, which is an adduct of 2-deoxystreptamine and an unusual eight-carbon bicyclic dialdose. Despite its extensive study and relevance to medical practice, the biosynthetic pathway of this complex aminoglycoside nevertheless remains incomplete. Herein, the remaining unknown steps of apramycin biosynthesis are reconstituted in vitro, thereby leading to a comprehensive picture of its biological assembly. In particular, phosphomutase AprJ and nucleotide transferase AprK are found to catalyze the conversion of glucose 6-phosphate to NDP-ß-d-glucose as a critical biosynthetic intermediate. Moreover, the dehydrogenase AprD5 and transaminase AprL are identified as modifying this intermediate via introduction of an amino group at the 4â³ position without requiring prior 6â³-deoxygenation as is typically encountered in aminosugar biosynthesis. Finally, the glycoside hydrolase family 65 protein AprO is shown to utilize NDP-ß-d-glucose or NDP-4"-amino-4"-deoxy-ß-d-glucose to form the 8',1â³-O-glycosidic linkage of saccharocin or apramycin, respectively. As the activated sugar nucleotides in all known natural glycosylation reactions involve either NDP-α-d-hexoses or NDP-ß-l-hexoses, the reported chemistry expands the scope of known biological glycosylation reactions to NDP-ß-d-hexoses, with important implications for the understanding and repurposing of aminoglycoside biosynthesis.
Assuntos
Antibacterianos , Vias Biossintéticas , Glucose , Nebramicina/análogos & derivados , Glicosilação , Aminoglicosídeos , Nucleotídeos , Hexoses , AçúcaresRESUMO
Kendomycin B is distinguished from other ansamycins by its unique, fully carbogenic ansa scaffold. We show here that FAD-dependent monooxygenase Kmy13 is solely responsible for installing the rare ansa structural framework; in vivo gene disruption/complementation experiments and in vitro enzymatic assays are described in detail. Moreover, the compound with a ß-keto ester, kendolactone A (2), was confirmed as the natural substrate of Kmy13 and a bona fide biosynthetic intermediate en route to kendomycin B. Further structural prediction and biochemical assays have provided significant insights into the catalytic mechanism of Kmy13.