RESUMO
The human brain is organized as a complex, hierarchical network. However, the structural covariance patterns among brain regions and the underlying biological substrates of such covariance networks remain to be clarified. The present study proposed a novel individualized structural covariance network termed voxel-based texture similarity networks (vTSNs) based on 76 refined voxel-based textural features derived from structural magnetic resonance images. Validated in three independent longitudinal healthy cohorts (40, 23, and 60 healthy participants, respectively) with two common brain atlases, we found that the vTSN could robustly resolve inter-subject variability with high test-retest reliability. In contrast to the regional-based texture similarity networks (rTSNs) that calculate radiomic features based on region-of-interest information, vTSNs had higher inter- and intra-subject variability ratios and test-retest reliability in connectivity strength and network topological properties. Moreover, the Spearman correlation indicated a stronger association of the gene expression similarity network (GESN) with vTSNs than with rTSNs (vTSN: r = 0.600, rTSN: r = 0.433, z = 39.784, P < 0.001). Hierarchical clustering identified 3 vTSN subnets with differential association patterns with 13 coexpression modules, 16 neurotransmitters, 7 electrophysiology, 4 metabolism, and 2 large-scale structural and 4 functional organization maps. Moreover, these subnets had unique biological hierarchical organization from the subcortex-limbic system to the ventral neocortex and then to the dorsal neocortex. Based on 424 unrelated, qualified healthy subjects from the Human Connectome Project, we found that vTSNs could sensitively represent sex differences, especially for connections in the subcortex-limbic system and between the subcortex-limbic system and the ventral neocortex. Moreover, a multivariate variance component model revealed that vTSNs could explain a significant proportion of inter-subject behavioral variance in cognition (80.0 %) and motor functions (63.4 %). Finally, using 494 healthy adults (aged 19-80 years old) from the Southwest University Adult Lifespan Dataset, the Spearman correlation identified a significant association between aging and vTSN strength, especially within the subcortex-limbic system and between the subcortex-limbic system and the dorsal neocortex. In summary, our proposed vTSN is robust in uncovering individual variability and neurobiological brain processes, which can serve as biologically plausible measures for linking biological processes and human behavior.
Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Imageamento por Ressonância Magnética/métodos , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Adulto Jovem , Ontologias Biológicas , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Rede Nervosa/anatomia & histologia , Pessoa de Meia-Idade , Conectoma/métodos , Reprodutibilidade dos Testes , IdosoRESUMO
Functional magnetic resonance imaging (fMRI) has been widely used in studying the neural mechanisms of pain in the human brain, primarily focusing on where in the brain pain-elicited neural activities occur (i.e., the spatial distribution of pain-related brain activities). However, the temporal dynamics of pain-elicited hemodynamic responses (HDRs) measured by fMRI may also contain information specific to pain processing but have been largely neglected. Using high temporal resolution fMRI (TR = 0.8 s) data acquired from 62 healthy participants, in the present study we aimed to test whether pain-distinguishing information could be decoded from the spatial pattern of the temporal dynamics (i.e., the spatiotemporal pattern) of HDRs elicited by painful stimuli. Specifically, the peak latency and the response duration were used to characterize the temporal dynamics of HDRs to painful laser stimuli and non-painful electric stimuli, and then were compared between the two conditions (i.e., pain and no-pain) using a voxel-wise univariate analysis and a multivariate pattern analysis. Furthermore, we also tested whether the two temporal characteristics of pain-elicited HDRs and their spatial patterns were associated with pain-related behaviors. We found that the spatial patterns of HDR peak latency and response duration could successfully discriminate pain from no-pain. Interestingly, we also observed that the Pain Vigilance and Awareness Questionnaire (PVAQ) scores were correlated with the average response duration in bilateral insula and secondary somatosensory cortex (S2) and could also be predicted from the across-voxel spatial patterns of response durations in the middle cingulate cortex and middle frontal gyrus only during painful condition but not during non-painful condition. These findings indicate that the spatiotemporal pattern of pain-elicited HDRs may contain pain-specific information and highlight the importance of studying the neural mechanisms of pain by taking advantage of the high sensitivity of fMRI to both spatial and temporal information of brain responses.
Assuntos
Mapeamento Encefálico , Encéfalo , Imageamento por Ressonância Magnética , Dor , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Dor/fisiopatologia , Dor/diagnóstico por imagem , Hemodinâmica/fisiologia , Tempo de Reação/fisiologia , Estimulação ElétricaRESUMO
The precise mapping of collateral circulation and ischemic penumbra is crucial for diagnosing and treating acute ischemic stroke (AIS). Unfortunately, there exists a significant shortage of high-sensitivity and high-resolution in vivo imaging techniques to fulfill this requirement. Herein, a contrast enhanced susceptibility-weighted imaging (CE-SWI) using the minimalist dextran-modified Fe3O4 nanoparticles (Fe3O4@Dextran NPs) are introduced for the highly sensitive and high-resolution AIS depiction under 9.4 T for the first time. The Fe3O4@Dextran NPs are synthesized via a simple one-pot coprecipitation method using commercial reagents under room temperature. It shows merits of small size (hydrodynamic size 25.8 nm), good solubility, high transverse relaxivity (r2) of 51.3 mM-1s-1 at 9.4 T, and superior biocompatibility. The Fe3O4@Dextran NPs-enhanced SWI can highlight the cerebral vessels readily with significantly improved contrast and ultrahigh resolution of 0.1 mm under 9.4 T MR scanner, enabling the clear spatial identification of collateral circulation in the middle cerebral artery occlusion (MCAO) rat model. Furthermore, Fe3O4@Dextran NPs-enhanced SWI facilitates the precise depiction of ischemia core, collaterals, and ischemic penumbra post AIS through matching analysis with other multimodal MR sequences. The proposed Fe3O4@Dextran NPs-enhanced SWI offers a high-sensitivity and high-resolution imaging tool for individualized characterization and personally precise theranostics of stroke patients.
Assuntos
Imageamento por Ressonância Magnética , Acidente Vascular Cerebral , Animais , Imageamento por Ressonância Magnética/métodos , Acidente Vascular Cerebral/diagnóstico por imagem , Dextranos/química , Ratos , Compostos Férricos/química , Ratos Sprague-Dawley , Masculino , Nanopartículas Magnéticas de Óxido de Ferro/química , Meios de Contraste/química , Infarto da Artéria Cerebral Média/diagnóstico por imagemRESUMO
Individual differences in human brain structure, function, and behavior can be attributed to genetic variations, environmental exposures, and their interactions. Although genome-wide association studies have identified many genetic variants associated with brain imaging phenotypes, environmental exposures associated with these phenotypes remain largely unknown. Here, we propose that environmental neuroscience should pay more attention on exploring the associations between lifetime environmental exposures (exposome) and brain imaging phenotypes and identifying both cumulative environmental effects and their vulnerable age windows during the life course. Exposome-neuroimaging association studies face several challenges including the accurate measurement of the totality of environmental exposures varied in space and time, the highly correlated structure of the exposome, and the lack of standardized approaches for exposome-wide association studies. By agnostically scanning the effects of environmental exposures on brain imaging phenotypes and their interactions with genomic variations, exposome-neuroimaging association analyses will improve our understanding of causal factors associated with individual differences in brain structure and function as well as their relations with cognitive abilities and neuropsychiatric disorders.
Assuntos
Expossoma , Humanos , Estudo de Associação Genômica Ampla , Exposição Ambiental/efeitos adversos , Encéfalo , CogniçãoRESUMO
Evidence highlights that dopamine (DA) system dysregulation and prefrontal cortex (PFC) dysfunction may underlie the pathophysiology of schizophrenia. However, the associations among DA genes, PFC morphometry, and schizophrenia have not yet been fully clarified. Based on the brain gene expression dataset from Allen Human Brain Atlas and structural magnetic resonance imaging data (NDIS = 1727, NREP = 408), we first identified 10 out of 22 PFC subregions whose gray matter volume (GMV) covariance profiles were reliably associated with their DA genes coexpression profiles, then four out of the identified 10 PFC subregions demonstrated abnormally increased GMV covariance with the hippocampus, insula, and medial frontal areas in schizophrenia patients (NCASE = 100; NCONTROL = 102). Moreover, based on a schizophrenia postmortem expression dataset, we found that the DA genes coexpression of schizophrenia was significantly reduced between the middle frontal gyrus and hippocampus, in which 21 DA genes showed significantly unsynchronized expression changes, and the 21 genes' brain expression were enriched in brain activity invoked by working memory, reward, speech production, and episodic memory. Our findings indicate the DA genes selectively regulate the structural covariance of PFC subregions by their coexpression profiles, which may underlie the disrupted GMV covariance and impaired cognitive functions in schizophrenia.
Assuntos
Dopamina , Regulação da Expressão Gênica , Substância Cinzenta , Córtex Pré-Frontal , Esquizofrenia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/metabolismo , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Esquizofrenia/metabolismo , Dopamina/metabolismo , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/metabolismo , Memória de Curto Prazo , Memória Episódica , Recompensa , Fala , Humanos , Masculino , Feminino , Adolescente , Adulto Jovem , Adulto , Conjuntos de Dados como Assunto , Imageamento por Ressonância MagnéticaRESUMO
Alzheimer's disease (AD) patients suffer progressive cerebral atrophy before dementia onset. However, the region-specific atrophic processes and the influences of age and apolipoprotein E (APOE) on atrophic trajectory are still unclear. By mapping the region-specific nonlinear atrophic trajectory of whole cerebrum from amnestic mild cognitive impairment (aMCI) to AD based on longitudinal structural magnetic resonance imaging data from Alzheimer's disease Neuroimaging Initiative (ADNI) database, we unraveled a quadratic accelerated atrophic trajectory of 68 cerebral regions from aMCI to AD, especially in the superior temporal pole, caudate, and hippocampus. Besides, interaction analyses demonstrated that APOE ε4 carriers had faster atrophic rates than noncarriers in 8 regions, including the caudate, hippocampus, insula, etc.; younger patients progressed faster than older patients in 32 regions, especially for the superior temporal pole, hippocampus, and superior temporal gyrus; and 15 regions demonstrated complex interaction among age, APOE, and disease progression, including the caudate, hippocampus, etc. (P < 0.05/68, Bonferroni correction). Finally, Cox proportional hazards regression model based on the identified region-specific biomarkers could effectively predict the time to AD conversion within 10 years. In summary, cerebral atrophic trajectory mapping could help a comprehensive understanding of AD development and offer potential biomarkers for predicting AD conversion.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Imageamento por Ressonância Magnética/métodos , Apolipoproteínas E/genética , Atrofia , Biomarcadores , Progressão da DoençaRESUMO
Genome-wide association studies (GWASs) have identified multiple susceptibility loci for Alzheimer's disease (AD), which is characterized by early and progressive damage to the hippocampus. However, the association of hippocampal gene expression with AD and the underlying neurobiological pathways remain largely unknown. Based on the genomic and transcriptomic data of 111 hippocampal samples and the summary data of two large-scale meta-analyses of GWASs, a transcriptome-wide association study (TWAS) was performed to identify genes with significant associations between hippocampal expression and AD. We identified 54 significantly associated genes using an AD-GWAS meta-analysis of 455,258 individuals; 36 of the genes were confirmed in another AD-GWAS meta-analysis of 63,926 individuals. Fine-mapping models further prioritized 24 AD-related genes whose effects on AD were mediated by hippocampal expression, including APOE and two novel genes (PTPN9 and PCDHA4). These genes are functionally related to amyloid-beta formation, phosphorylation/dephosphorylation, neuronal apoptosis, neurogenesis and telomerase-related processes. By integrating the predicted hippocampal expression and neuroimaging data, we found that the hippocampal expression of QPCTL and ERCC2 showed significant difference between AD patients and cognitively normal elderly individuals as well as correlated with hippocampal volume. Mediation analysis further demonstrated that hippocampal volume mediated the effect of hippocampal gene expression (QPCTL and ERCC2) on AD. This study identifies two novel genes associated with AD by integrating hippocampal gene expression and genome-wide association data and reveals candidate hippocampus-mediated neurobiological pathways from gene expression to AD.
Assuntos
Doença de Alzheimer/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Hipocampo/metabolismo , Polimorfismo de Nucleotídeo Único , Transcriptoma/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Feminino , Redes Reguladoras de Genes/genética , Genômica/métodos , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Sequenciamento Completo do Genoma/métodosRESUMO
How pain emerges from human brain remains an unresolved question in pain neuroscience. Neuroimaging studies have suggested that all brain areas activated by painful stimuli were also activated by tactile stimuli, and vice versa. Nonetheless, pain-preferential spatial patterns of voxel-level activation in the brain have been observed when distinguishing painful and tactile brain activations using multivariate pattern analysis (MVPA). According to two hypotheses, the neural activity pattern preferentially encoding pain could exist at a global, coarse-grained, regional level, corresponding to the "pain connectome" hypothesis proposing that pain-preferential information may be encoded by the synchronized activity across multiple distant brain regions, and/or exist at a local, fine-grained, voxel level, corresponding to the "intermingled specialized/preferential neurons" hypothesis proposing that neurons responding specially or preferentially to pain could be present and intermingled with non-pain neurons within a voxel. Here, we systematically investigated the spatial scales of pain-distinguishing information in the human brain measured by fMRI using machine learning techniques, and found that pain-distinguishing information could be detected at both coarse-grained spatial scales across widely distributed brain regions and fine-grained spatial scales within many local areas. Importantly, the spatial distribution of pain-distinguishing information in the brain varies across individuals and such inter-individual variations may be related to a person's trait about pain perception, particularly the pain vigilance and awareness. These results provide new insights into the longstanding question of how pain is represented in the human brain and help the identification of characteristic neuroimaging measurements of pain.
Assuntos
Mapeamento Encefálico , Conectoma , Humanos , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Dor/diagnóstico por imagem , Percepção da Dor/fisiologia , Imageamento por Ressonância Magnética/métodosRESUMO
Subcortical ischemic stroke can lead to persistent structural changes in the cerebral cortex. The evolution of cortical structural changes after subcortical stroke is largely unknown, as are their relations with motor recovery, lesion location, and early impairment of specific subsets of fibers in the corticospinal tract (CST). In this observational study, cortical structural changes were compared between 181 chronic patients with subcortical stroke involving the motor pathway and 113 healthy controls. The impacts of acute lesion location and early impairments of specific CSTs on cortical structural changes were investigated in the patients by combining voxel-based correlation analysis with an association study that compared CST damage and cortical structural changes. Longitudinal patterns of cortical structural change were explored in a group of 81 patients with subcortical stroke using a linear mixed-effects model. In the cross-sectional analyses, patients with partial recovery showed more significant reductions in cortical thickness, surface area, or gray matter volume in the sensorimotor cortex, cingulate gyrus, and gyrus rectus than did patients with complete recovery; however, patients with complete recovery demonstrated more significant increases in the cortical structural measures in frontal, temporal, and occipital regions than did patients with partial recovery. Voxel-based correlation analysis in these patients showed that acute stroke lesions involving the CST fibers originating from the primary motor cortex were associated with cortical thickness reductions in the ipsilesional motor cortex in the chronic stage. Acute stroke lesions in the putamen were correlated with increased surface area in the temporal pole in the chronic stage. The early impairment of the CST fibers originating from the primary sensory area was associated with increased cortical thickness in the occipital cortex. In the longitudinal analyses, patients with partial recovery showed gradually reduced cortical thickness, surface area, and gray matter volume in brain regions with significant structural damage in the chronic stage. Patients with complete recovery demonstrated gradually increasing cortical thickness, surface area, and gray-matter volume in the frontal, temporal, and occipital regions. The directions of slow structural changes in the frontal, occipital, and cingulate cortices were completely different between patients with partial and complete recovery. Complex cortical structural changes and their dynamic evolution patterns were different, even contrasting, in patients with partial and complete recovery, and were associated with lesion location and with impairment of specific CST fiber subsets.
Assuntos
Córtex Motor , Acidente Vascular Cerebral , Humanos , Estudos Transversais , Imageamento por Ressonância Magnética , Acidente Vascular Cerebral/complicações , Encéfalo/patologia , Córtex Motor/patologiaRESUMO
Florbetapir 18 F (AV45), a highly sensitive and specific positron emission tomographic (PET) molecular biomarker binding to the amyloid-ß of Alzheimer's disease (AD), is constrained by radiation and cost. We sought to combat it by combining multimodal magnetic resonance imaging (MRI) images and a collaborative generative adversarial networks model (CollaGAN) to develop a multimodal MRI-derived Amyloid-ß (MRAß) biomarker. We collected multimodal MRI and PET AV45 data of 380 qualified participants from the ADNI dataset and 64 subjects from OASIS3 dataset. A five-fold cross-validation CollaGAN were applied to generate MRAß. In the ADNI dataset, we found MRAß could characterize the subject-level AV45 spatial variations in both AD and mild cognitive impairment (MCI). Voxel-wise two-sample t-tests demonstrated amyloid-ß depositions identified by MRAß in AD and MCI were significantly higher than healthy controls (HCs) in widespread cortices (p < .05, corrected) and were much similar to those by AV45 (r > .92, p < .001). Moreover, a 3D ResNet classifier demonstrated that MRAß was comparable to AV45 in discriminating AD from HC in both the ADNI and OASIS3 datasets, and in discriminate MCI from HC in ADNI. Finally, we found MRAß could mimic cortical hyper-AV45 in HCs who later converted to MCI (r = .79, p < .001) and was comparable to AV45 in discriminating them from stable HC (p > .05). In summary, our work illustrates that MRAß synthesized by multimodal MRI could mimic the cerebral amyloid-ß depositions like AV45 and lends credence to the feasibility of advancing MRI toward molecular-explainable biomarkers.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons/métodos , Disfunção Cognitiva/patologia , BiomarcadoresRESUMO
Functional connectivity (FC) disruption is a remarkable characteristic of schizophrenia. However, heterogeneous patterns reported across sites severely hindered its clinical generalization. Based on qualified nodal-based FC of 340 schizophrenia patients (SZ) and 348 normal controls (NC) acquired from seven different scanners, this study compared four commonly used site-effect correction methods in removing the site-related heterogeneities, and then tried to cluster the abnormal FCs into several replicable and independent disrupted subnets across sites, related them to clinical symptoms, and evaluated their potentials in schizophrenia classification. Among the four site-related heterogeneity correction methods, ComBat harmonization (F1 score: 0.806 ± 0.145) achieved the overall best balance between sensitivity and false discovery rate in unraveling the aberrant FCs of schizophrenia in the local and public data sets. Hierarchical clustering analysis identified three replicable FC disruption subnets across the local and public data sets: hypo-connectivity within sensory areas (Net1), hypo-connectivity within thalamus, striatum, and ventral attention network (Net2), and hyper-connectivity between thalamus and sensory processing system (Net3). Notably, the derived composite FC within Net1 was negatively correlated with hostility and disorientation in the public validation set (p < .05). Finally, the three subnet-specific composite FCs (Best area under the receiver operating characteristic curve [AUC] = 0.728) can robustly and meaningfully discriminate the SZ from NC with comparable performance with the full identified FCs features (best AUC = 0.765) in the out-of-sample public data set (Z = -1.583, p = .114). In conclusion, ComBat harmonization was most robust in detecting aberrant connectivity for schizophrenia. Besides, the three subnet-specific composite FC measures might be replicable neuroimaging markers for schizophrenia.
Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Corpo Estriado , Mapeamento Encefálico/métodosRESUMO
Alzheimer's disease (AD) is a common neurodegeneration disease associated with substantial disruptions in the brain network. However, most studies investigated static resting-state functional connections, while the alteration of dynamic functional connectivity in AD remains largely unknown. This study used group independent component analysis and the sliding-window method to estimate the subject-specific dynamic connectivity states in 1704 individuals from three data sets. Informative inherent states were identified by the multivariate pattern classification method, and classifiers were built to distinguish ADs from normal controls (NCs) and to classify mild cognitive impairment (MCI) patients with informative inherent states similar to ADs or not. In addition, MCI subgroups with heterogeneous functional states were examined in the context of different cognition decline trajectories. Five informative states were identified by feature selection, mainly involving functional connectivity belonging to the default mode network and working memory network. The classifiers discriminating AD and NC achieved the mean area under the receiver operating characteristic curve of 0.87 with leave-one-site-out cross-validation. Alterations in connectivity strength, fluctuation, and inter-synchronization were found in AD and MCIs. Moreover, individuals with MCI were clustered into two subgroups, which had different degrees of atrophy and different trajectories of cognition decline progression. The present study uncovered the alteration of dynamic functional connectivity in AD and highlighted that the dynamic states could be powerful features to discriminate patients from NCs. Furthermore, it demonstrated that these states help to identify MCIs with faster cognition decline and might contribute to the early prevention of AD.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Aprendizado de MáquinaRESUMO
BACKGROUND: The cerebellum plays key roles in the pathology of multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD), but the way in which these conditions affect how the cerebellum communicates with the rest of the brain (its connectome) and associated genetic correlates remains largely unknown. METHODS: Combining multimodal MRI data from 208 MS patients, 200 NMOSD patients and 228 healthy controls and brain-wide transcriptional data, this study characterized convergent and divergent alterations in within-cerebellar and cerebello-cerebral morphological and functional connectivity in MS and NMOSD, and further explored the association between the connectivity alterations and gene expression profiles. RESULTS: Despite numerous common alterations in the two conditions, diagnosis-specific increases in cerebellar morphological connectivity were found in MS within the cerebellar secondary motor module, and in NMOSD between cerebellar primary motor module and cerebral motor- and sensory-related areas. Both diseases also exhibited decreased functional connectivity between cerebellar motor modules and cerebral association cortices with MS-specific decreases within cerebellar secondary motor module and NMOSD-specific decreases between cerebellar motor modules and cerebral limbic and default-mode regions. Transcriptional data explained > 37.5% variance of the cerebellar functional alterations in MS with the most correlated genes enriched in signaling and ion transport-related processes and preferentially located in excitatory and inhibitory neurons. For NMOSD, similar results were found but with the most correlated genes also preferentially located in astrocytes and microglia. Finally, we showed that cerebellar connectivity can help distinguish the three groups from each other with morphological connectivity as predominant features for differentiating the patients from controls while functional connectivity for discriminating the two diseases. CONCLUSIONS: We demonstrate convergent and divergent cerebellar connectome alterations and associated transcriptomic signatures between MS and NMOSD, providing insight into shared and unique neurobiological mechanisms underlying these two diseases.
Assuntos
Conectoma , Esclerose Múltipla , Neuromielite Óptica , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/genética , Neuromielite Óptica/diagnóstico por imagem , Neuromielite Óptica/genética , Neuromielite Óptica/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética , Cerebelo/diagnóstico por imagem , Cerebelo/patologiaRESUMO
Human hippocampal volume has been separately associated with single nucleotide polymorphisms (SNPs), DNA methylation and gene expression, but their causal relationships remain largely unknown. Here, we aimed at identifying the causal relationships of SNPs, DNA methylation, and gene expression that are associated with hippocampal volume by integrating cross-omics analyses with genome editing, overexpression and causality inference. Based on structural neuroimaging data and blood-derived genome, transcriptome and methylome data, we prioritized a possibly causal association across multiple molecular phenotypes: rs1053218 mutation leads to cg26741686 hypermethylation, thus leads to overactivation of the associated ANKRD37 gene expression in blood, a gene involving hypoxia, which may result in the reduction of human hippocampal volume. The possibly causal relationships from rs1053218 to cg26741686 methylation to ANKRD37 expression obtained from peripheral blood were replicated in human hippocampal tissue. To confirm causality, we performed CRISPR-based genome and epigenome-editing of rs1053218 homologous alleles and cg26741686 methylation in mouse neural stem cell differentiation models, and overexpressed ANKRD37 in mouse hippocampus. These in-vitro and in-vivo experiments confirmed that rs1053218 mutation caused cg26741686 hypermethylation and ANKRD37 overexpression, and cg26741686 hypermethylation favored ANKRD37 overexpression, and ANKRD37 overexpression reduced hippocampal volume. The pairwise relationships of rs1053218 with hippocampal volume, rs1053218 with cg26741686 methylation, cg26741686 methylation with ANKRD37 expression, and ANKRD37 expression with hippocampal volume could be replicated in an independent healthy young (n = 443) dataset and observed in elderly people (n = 194), and were more significant in patients with late-onset Alzheimer's disease (n = 76). This study revealed a novel causal molecular association mechanism of ANKRD37 with human hippocampal volume, which may facilitate the design of prevention and treatment strategies for hippocampal impairment.
Assuntos
Metilação de DNA , Hipocampo , Idoso , Animais , Humanos , Camundongos , Alelos , Doença de Alzheimer/genética , Metilação de DNA/genética , Epigenoma , Hipocampo/metabolismo , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
Pain is subjective and perceived differently in different people. However, individual differences in pain-elicited brain activations are largely overlooked and often discarded as noises. Here, we used a brain-activation-based individual identification procedure to investigate the uniqueness of the activation patterns within the whole brain or brain regions elicited by nociceptive (laser) and tactile (electrical) stimuli in each of 62 healthy participants. Specifically, brain activation patterns were used as "fingerprints" to identify each individual participant within and across sensory modalities, and individual identification accuracy was calculated to measure each individual's identifiability. We found that individual participants could be successfully identified using their brain activation patterns elicited by nociceptive stimuli, tactile stimuli, or even across modalities. However, different participants had different identifiability; importantly, the within-pain, but not within-touch or cross-modality, individual identifiability obtained from three brain regions (i.e., the left superior frontal gyrus, the middle temporal gyrus and the insular gyrus) were inversely correlated with the scores of Pain Vigilance and Awareness Questionnaire (i.e., how a person is alerted to pain) across participants. These results suggest that each individual has a unique pattern of brain responses to nociceptive stimuli which contains both modality-nonspecific and pain-specific information and may be associated with pain-related behaviors shaped by his/her own personal experiences and highlight the importance of a transition from group-level to individual-level characterization of brain activity in neuroimaging studies.
Assuntos
Percepção do Tato , Tato , Encéfalo , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Dor , Tato/fisiologia , Percepção do Tato/fisiologiaRESUMO
BACKGROUND: Major depressive disorder (MDD) is a common debilitating disorder characterized by impaired spontaneous brain activity, yet little is known about its alterations in dynamic properties and the molecular mechanisms associated with these changes. METHODS: Based on the resting-state functional MRI data of 65 first-episode, treatment-naïve patients with MDD and 66 healthy controls, we compared dynamic regional homogeneity (dReHo) of spontaneous brain activity between the two groups, and we investigated gene expression profiles associated with dReHo alterations in MDD by leveraging transcriptional data from the Allen Human Brain Atlas and weighted gene co-expression network analysis. RESULTS: Compared with healthy controls, patients with MDD consistently showed reduced dReHo in both fusiform gyri and in the right temporal pole and hippocampus. The expression profiles of 16 gene modules were correlated with dReHo alterations in MDD. These gene modules were enriched for various biological process terms, including immune, synaptic signalling, ion channels, mitochondrial function and protein metabolism, and were preferentially expressed in different cell types. CONCLUSIONS: Patients with MDD have reduced dReHo in brain areas associated with emotional and cognitive regulation, and these changes may be related to complex polygenetic and polypathway mechanisms.
Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/genética , Mapeamento Encefálico , Transcriptoma , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância MagnéticaRESUMO
BACKGROUND: Hippocampal involvement may differ between multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD). OBJECTIVE: To investigate the morphometric, diffusion and functional alterations in hippocampus in MS and NMOSD and the clinical significance. METHODS: A total of 752 participants including 236 MS, 236 NMOSD and 280 healthy controls (HC) were included in this retrospective multi-center study. The hippocampus and subfield volumes, fractional anisotropy (FA) and mean diffusivity (MD), amplitude of low frequency fluctuation (ALFF) and degree centrality (DC) were analyzed, and their associations with clinical variables were investigated. RESULTS: The hippocampus showed significantly lower volume, FA and greater MD in MS compared to NMOSD and HC (p < 0.05), while no abnormal ALFF or DC was identified in any group. Hippocampal subfields were affected in both diseases, though subiculum, presubiculum and fimbria showed significantly lower volume only in MS (p < 0.05). Significant correlations between diffusion alterations, several subfield volumes and clinical variables were observed in both diseases, especially in MS (R = -0.444 to 0.498, p < 0.05). FA and MD showed fair discriminative power between MS and HC, NMOSD and HC (AUC > 0.7). CONCLUSIONS: Hippocampal atrophy and diffusion abnormalities were identified in MS and NMOSD, partly explaining how clinical disability and cognitive impairment are differentially affected.
Assuntos
Esclerose Múltipla , Neuromielite Óptica , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , Neuromielite Óptica/diagnóstico por imagem , Estudos RetrospectivosRESUMO
Genes involved in pain and touch sensations have been studied extensively, but very few studies have tried to link them with neural activities in the brain. Here, we aimed to identify genes preferentially correlated to painful activation patterns by linking the spatial patterns of gene expression of Allen Human Brain Atlas with the pain-elicited neural responses in the human brain, with a parallel, control analysis for identification of genes preferentially correlated to tactile activation patterns. We identified 1828 genes whose expression patterns preferentially correlated to painful activation patterns and 411 genes whose expression patterns preferentially correlated to tactile activation pattern at the cortical level. In contrast to the enrichment for astrocyte and inhibitory synaptic transmission of genes preferentially correlated to tactile activation, the genes preferentially correlated to painful activation were mainly enriched for neuron and opioid- and addiction-related pathways and showed significant overlap with pain-related genes identified in previous studies. These findings not only provide important evidence for the differential genetic architectures of specific brain activation patterns elicited by painful and tactile stimuli but also validate a new approach to studying pain- and touch-related genes more directly from the perspective of neural responses in the human brain.
Assuntos
Encéfalo/metabolismo , Dor/genética , Tato/genética , Astrócitos/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Neuroimagem Funcional , Perfilação da Expressão Gênica , Humanos , Imageamento por Ressonância Magnética , Inibição Neural/genética , Neurônios/metabolismo , Dor/diagnóstico por imagem , Percepção da Dor , Análise Espaço-Temporal , Transmissão Sináptica/genéticaRESUMO
Much evidence indicates the influence of the oxytocin receptor (OXTR) gene on autism spectrum disorders (ASDs), a set of disorders characterized by a range of deficits in prosocial behaviors, which are closely related to the personality trait of reward dependence (RD). However, we do not know the effect of the OXTR polygenic risk score for ASDs (OXTR-PRSASDs) on RD and its underlying neuroanatomical substrate. Here, we aimed to investigate associations among the OXTR-PRSASDs, gray matter volume (GMV), and RD in two independent datasets of healthy young adults (n = 450 and 540). We found that the individuals with higher OXTR-PRSASDs had lower RD and significantly smaller GMV in the right posterior insula and putamen. The GMV of this region showed a positive correlation with RD and a mediation effect on the association between OXTR-PRSASDs and RD. Moreover, the correlation map between OXTR-PRSASDs and GMV showed spatial correlation with OXTR gene expression. All results were highly consistent between the two datasets. These findings highlight a possible neural pathway by which the common variants in the OXTR gene associated with ASDs may jointly impact the GMV of the right posterior insula and putamen and further affect the personality trait of RD.
Assuntos
Transtorno do Espectro Autista/genética , Córtex Cerebral/fisiopatologia , Putamen/fisiopatologia , Receptores de Ocitocina/genética , Recompensa , Adolescente , Adulto , Mapeamento Encefálico , Feminino , Frequência do Gene , Variação Genética , Genótipo , Substância Cinzenta/diagnóstico por imagem , Humanos , Masculino , Herança Multifatorial , Vias Neurais/fisiopatologia , Polimorfismo de Nucleotídeo Único , Adulto JovemRESUMO
Although both the granular layer of the prefrontal cortex (PFC) and schizophrenia are unique in primates, especially humans, their linkage is unclear. Here, we tested whether schizophrenia is associated with expression profiles of the granule cell (GC)-related genes in the human PFC. We identified 14 candidate GC-related genes with gradually increased expression levels along the gradient of the agranular, dysgranular, light-granular, and granular prefrontal regions based on the densely sampled gene expression data of 6 postmortem human brains, and with more than 10-fold expression in neurons than other cell types based on the single-cell RNA-sequencing data of the human PFC. These GC-related genes were functionally associated with synaptic transmission and cell development and differentiation. The identified 14 GC-related genes were significantly enriched for schizophrenia, but not for depression and bipolar disorder. The expression levels of the 4 stable schizophrenia- and GC-related genes were spatially correlated with gray matter volume differences in the PFC between patients with schizophrenia and healthy controls. This study provides a set of candidate genes for the human prefrontal GCs and links expression profiles of the GC-related genes to the prefrontal structural impairments in schizophrenia.