Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612714

RESUMO

Strigolactones (SLs) are plant hormones that regulate several key agronomic traits, including shoot branching, leaf senescence, and stress tolerance. The artificial regulation of SL biosynthesis and signaling has been considered as a potent strategy in regulating plant architecture and combatting the infection of parasitic weeds to help improve crop yield. DL1b is a previously reported SL receptor inhibitor molecule that significantly promotes shoot branching. Here, we synthesized 18 novel compounds based on the structure of DL1b. We performed rice tillering activity assay and selected a novel small molecule, C6, as a candidate SL receptor inhibitor. In vitro bioassays demonstrated that C6 possesses various regulatory functions as an SL inhibitor, including inhibiting germination of the root parasitic seeds Phelipanche aegyptiaca, delaying leaf senescence and promoting hypocotyl elongation of Arabidopsis. ITC analysis and molecular docking experiments further confirmed that C6 can interact with SL receptor proteins, thereby interfering with the binding of SL to its receptor. Therefore, C6 is considered a novel SL receptor inhibitor with potential applications in plant architecture control and prevention of root parasitic weed infestation.


Assuntos
Arabidopsis , Ésteres , Compostos Heterocíclicos com 3 Anéis , Lactonas , Naftalenos , Simulação de Acoplamento Molecular , Ácidos Carboxílicos
2.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37373113

RESUMO

Strigolactones (SLs) are a class of plant hormones and rhizosphere communication signals of great interest. They perform diverse biological functions including the stimulation of parasitic seed germination and phytohormonal activity. However, their practical use is limited by their low abundance and complex structure, which requires simpler SL analogues and mimics with maintained biological function. Here, new, hybrid-type SL mimics were designed, derived from Cinnamic amide, a new potential plant growth regulator with good germination and rooting-promoting activities. Bioassay results indicated that compound 6 not only displayed good germination activity against the parasitic weed O. aegyptiaca with an EC50 value of 2.36 × 10-8 M, but also exhibited significant inhibitory activity against Arabidopsis root growth and lateral root formation, as well as promoting root hair elongation, similar to the action of GR24. Further morphological experiments on Arabidopsis max2-1 mutants revealed that 6 possessed SL-like physiological functions. Furthermore, molecular docking studies indicated that the binding mode of 6 was similar to that of GR24 in the active site of OsD14. This work provides valuable clues for the discovery of novel SL mimics.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Simulação de Acoplamento Molecular , Germinação , Reguladores de Crescimento de Plantas/metabolismo , Lactonas/química
3.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077443

RESUMO

Low temperature is an important environmental factor limiting the widespread planting of tropical and subtropical crops. The application of plant regulator coronatine, which is an analog of Jasmonic acid (JA), is an effective approach to enhancing crop's resistance to chilling stress and other abiotic stresses. However, the function and mechanism of coronatine in promoting chilling resistance of tomato is unknown. In this study, coronatine treatment was demonstrated to significantly increase tomato chilling tolerance. Coronatine increases H3K4me3 modifications to make greater chromatin accessibility in multiple chilling-activated genes. Corresponding to that, the expression of CBFs, other chilling-responsive transcription factor (TF) genes, and JA-responsive genes is significantly induced by coronatine to trigger an extensive transcriptional reprogramming, thus resulting in a comprehensive chilling adaptation. These results indicate that coronatine enhances the chilling tolerance of tomato plants by inducing epigenetic adaptations and transcriptional reprogramming.


Assuntos
Solanum lycopersicum , Aclimatação , Aminoácidos , Temperatura Baixa , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Indenos , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955571

RESUMO

Melatonin (MT) can effectively reduce oxidative damage induced by abiotic stresses such as salt in plants. However, the effects of MT on physiological responses and molecular regulation during wheat germination remains largely elusive. In this study, the response of wheat seeds to MT under salt stress during germination was investigated at physiological and transcriptome levels. Our results revealed that application of MT significantly reduced the negative influence of salt stress on wheat seed germination. The oxidative load was reduced by inducing high activities of antioxidant enzymes. In parallel, the content of gibberellin A3 (GA3) and jasmonic acid (JA) increased in MT-treated seedling. RNA-seq analysis demonstrated that MT alters oxidoreductase activity and phytohormone-dependent signal transduction pathways under salt stress. Weighted correlation network analysis (WGCNA) revealed that MT participates in enhanced energy metabolism and protected seeds via maintained cell morphology under salt stress during wheat seed germination. Our findings provide a conceptual basis of the MT-mediated regulatory mechanism in plant adaptation to salt stress, and identify the potential candidate genes for salt-tolerant wheat molecular breeding.


Assuntos
Germinação , Melatonina , Melatonina/metabolismo , Melatonina/farmacologia , Estresse Salino , Plântula/metabolismo , Sementes/metabolismo , Estresse Fisiológico , Triticum/metabolismo
5.
Int J Mol Sci ; 20(10)2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31126161

RESUMO

Coronatine (COR) is a structural and functional analog of methyl jasmonic acid (MeJA), which can alleviate stress on plant. We studied the effects of COR on the drought stress of rice (Oryza sativa L.). Pre-treatment with COR significantly increased the biomass, relative water and proline content, and DPPH (1,1-diphenyl-2-picrylhydrazyl)-radical scavenging activity, decreased the electrolyte leakage and MDA (Malondialdehyde) content in order to maintain the stability of cell membrane. Meanwhile, we determined how COR alleviates water stress by Nipponbare gene expression profiles and cDNA microarray analyses. Seedlings were treated with 0.1 µmol L-1 COR at the three leafed stage for 12 h, followed with 17.5% polyethylene glycol (PEG). Whole genome transcript analysis was determined by employing the Rice Gene Chip (Affymetrix), a total of 870 probe sets were identified to be up or downregulated due to COR treatment under drought stress. Meanwhile, the real-time quantitative PCR (RT-qPCR) method was used to verify some genes; it indicated that there was a good agreement between the microarray data and RT-qPCR results. Our data showed that the differentially expressed genes were involved in stress response, signal transduction, metabolism and tissue structure development. Some important genes response to stress were induced by COR, which may enhance the expression of functional genes implicated in many kinds of metabolism, and play a role in defense response of rice seedling to drought stress. This study will aid in the analysis of the expressed gene induced by COR.


Assuntos
Aminoácidos/metabolismo , Regulação da Expressão Gênica de Plantas , Indenos/metabolismo , Oryza/genética , Aminoácidos/genética , Secas , Oryza/fisiologia , Plântula/genética , Plântula/fisiologia , Transdução de Sinais , Estresse Fisiológico , Transcriptoma , Água/metabolismo
6.
J Agric Food Chem ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593208

RESUMO

The pernicious parasitism exhibited by root parasitic weeds such as Orobanche and Striga poses substantial peril to agricultural productivity and global food security. This deleterious phenomenon hinges upon the targeted induction of the signaling molecule strigolactones (SLs). Consequently, the identification of prospective SL antagonists holds significant promise in the realm of mitigating the infection of these pernicious weeds. In this study, we synthesized and characterized D12 based on a potent SL antagonist KK094. In vivo assay results demonstrated that D12 remarkably impedes the germination of Phelipanche aegyptiaca and Striga asiatica seeds, while also alleviating the inhibitory consequence of the SL analogue GR24 on hypocotyl elongation in Arabidopsis thaliana. The docking study and ITC assay indicated that D12 can interact strongly with the SL receptor protein, which may interfere with the binding of SL to the receptor protein as a result. In addition, the results of crop safety assessment tests showed that D12 had no adverse effects on rice seed germination and seedling growth and development. The outcomes obtained from the present study suggested that D12 exhibited promise as a prospective antagonist of SL receptors, thereby displaying substantial efficacy in impeding the seed germination process of root parasitic weeds, providing a promising basis for rational design and development of further Striga-specific herbicides.

7.
Plant Physiol Biochem ; 213: 108860, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936070

RESUMO

Drought is one of the most common environmental stressors that severely threatens plant growth, development, and productivity. B2 (2,4-dichloroformamide cyclopropane acid), a novel plant growth regulator, plays an essential role in drought adaptation, significantly enhancing the tolerance of Carex breviculmis seedlings. Its beneficial effects include improved ornamental value, sustained chlorophyll content, increased leaf dry weight, elevated relative water content, and enhanced root activity under drought conditions. B2 also directly scavenges hydrogen peroxide and superoxide anion contents while indirectly enhancing the activities of antioxidant enzymes (superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase) to detoxify reactive oxygen species (ROS) oxidative damage. Transcriptome analysis demonstrated that B2 activates drought-responsive transcription factors (AP2/ERF-ERF, WRKY, and mTERF), leading to significant upregulation of genes associated with phenylpropanoid biosynthesis (HCT, POD, and COMT). Additionally, these transcription factors were found to suppress the degradation of starch. B2 regulates phytohormone signaling related-genes, leading to an increase in abscisic acid contents in drought-stressed plants. Collectively, these findings offer new insights into the intricate mechanisms underlying C. breviculmis' resistance to drought damage, highlighting the potential application of B2 for future turfgrass establishment and management with enhanced drought tolerance.


Assuntos
Secas , Reguladores de Crescimento de Plantas , Espécies Reativas de Oxigênio , Amido , Espécies Reativas de Oxigênio/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Amido/metabolismo , Amido/biossíntese , Regulação da Expressão Gênica de Plantas , Transdução de Sinais , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Propanóis/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Resistência à Seca
8.
J Fungi (Basel) ; 9(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38132756

RESUMO

One of the most destructive diseases, Gibberella stalk rot (GSR), caused by Fusarium graminearum, reduces maize yields significantly. An induced resistance response is a potent and cost-effective plant defense against pathogen attack. The functional counterpart of JAs, coronatine (COR), has attracted a lot of interest recently due to its ability to control plant growth and stimulate secondary metabolism. Although several studies have focused on COR as a plant immune elicitor to improve plant resistance to pathogens, the effectiveness and underlying mechanisms of the suppressive ability against COR to F. graminearum in maize have been limited. We investigated the potential physiological and molecular mechanisms of COR in modulating maize resistance to F. graminearum. COR treatment strongly enhanced disease resistance and promoted stomatal closure with H2O2 accumulation, and 10 µg/mL was confirmed as the best concentration. COR treatment increased defense-related enzyme activity and decreased the malondialdehyde content with enhanced antioxidant enzyme activity. To identify candidate resistance genes and gain insight into the molecular mechanism of GSR resistance associated with COR, we integrated transcriptomic and metabolomic data to systemically explore the defense mechanisms of COR, and multiple hub genes were pinpointed using weighted gene correlation network analysis (WGCNA). We discovered 6 significant modules containing 10 candidate genes: WRKY transcription factor (LOC100279570), calcium-binding protein (LOC100382070), NBR1-like protein (LOC100275089), amino acid permease (LOC100382244), glutathione S-transferase (LOC541830), HXXXD-type acyl-transferase (LOC100191608), prolin-rich extensin-like receptor protein kinase (LOC100501564), AP2-like ethylene-responsive transcription factor (LOC100384380), basic leucine zipper (LOC100275351), and glycosyltransferase (LOC606486), which are highly correlated with the jasmonic acid-ethylene signaling pathway and antioxidants. In addition, a core set of metabolites, including alpha-linolenic acid metabolism and flavonoids biosynthesis linked to the hub genes, were identified. Taken together, our research revealed differentially expressed key genes and metabolites, as well as co-expression networks, associated with COR treatment of maize stems after F. graminearum infection. In addition, COR-treated maize had higher JA (JA-Ile and Me-JA) levels. We postulated that COR plays a positive role in maize resistance to F. graminearum by regulating antioxidant levels and the JA signaling pathway, and the flavonoid biosynthesis pathway is also involved in the resistance response against GSR.

9.
World J Clin Cases ; 11(22): 5309-5315, 2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37621578

RESUMO

BACKGROUND: The co-occurrence of Anti-phospholipase A2 receptor-associated membranous nephropathy (anti-PLA2R-MN) and human immunodeficiency virus (HIV) infection is a rare clinical scenario, presenting significant challenges in terms of management and treatment. CASE SUMMARY: A 32-year-old Chinese male diagnosed with HIV infection presented with a clinical history of proteinuria persisting for over two years. A kidney biopsy demonstrated subepithelial immune complex deposition and a thickened glomerular basement membrane, indicative of stage I-II membranous nephropathy. Immunofluorescence staining revealed granular deposition of PLA2R (3+) along the glomerular capillary loops, corroborated by a strongly positive anti-PLA2R antibody test (1:320). Initial treatment involving losartan potassium, rivaroxaban, tacrolimus, and rituximab was discontinued due to either poor effectiveness or the occurrence of adverse events. Following a regimen of weekly subcutaneous injections of telitacicept (160 mg), a marked decline in the 24 h urine protein was observed within a three-month period, accompanied by a rise in serum albumin level. No significant reductions in peripheral blood CD3+CD4+T and CD3+CD8+T cell counts were detected. The patient's physical and psychological conditions showed significant improvements, with no adverse events reported during the treatment course. CONCLUSION: Telitacicept might offer a potential therapeutic avenue for patients diagnosed with anti-PLA2R-MN concomitant with HIV infection.

10.
Plants (Basel) ; 12(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38068620

RESUMO

The role of melatonin in plant growth and response to environmental stress has been widely demonstrated. However, the physiological and molecular regulation of salt tolerance in wheat seedlings by melatonin remains unclear. In this study, we investigated changes in phenotype, physiology, photosynthetic parameters, and transcript levels in wheat seedlings to reveal the role of melatonin in the regulation of salt tolerance in wheat. The results indicate that the application of exogenous melatonin significantly alleviates growth inhibition, reactive oxygen species accumulation, and membrane oxidative damage induced by salt stress in wheat. Additionally, exogenous melatonin increased antioxidant enzyme activity and regulated photosynthetic gas exchange. Transcriptomic data showed a significant up-regulation of genes encoding light-harvesting chlorophyll protein complex proteins in photosynthesis and genes related to chlorophyll and carotenoid biosynthesis under the influence of melatonin. These results suggest that exogenous melatonin improves salt tolerance in wheat seedlings by enhancing the antioxidant, photoprotective, and photosynthesis activities.

11.
Food Chem ; 375: 131899, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34954582

RESUMO

Soaking tea leaves make tea consumers exposure to pesticide residues more easily. However, there are few studies on the removal of pesticides in tea infusions. Therefore, a low-cost carbonized bacterial cellulose material was prepared by direct calcination method, and used to remove multiple pesticides in tea infusions quickly and efficiently. CBC-350 has the best removal efficiency for 9 pesticides and then screened the best adsorption conditions. The adsorption isotherm experiment was carried out and indicated that the adsorption process was in consist with the Freundlich model. The thermodynamic parameters are also calculated. Moreover, the adsorption mechanism was discussed, which suggests that π-π interaction and hydrophobic action are the driving force during the adsorption process. Exhilaratingly, the CBC-350 also has excellent adsorption capacity compared to other adsorbents and can be reused at least five times.


Assuntos
Resíduos de Praguicidas , Praguicidas , Poluentes Químicos da Água , Adsorção , Celulose , Resíduos de Praguicidas/análise , Praguicidas/análise , Chá , Poluentes Químicos da Água/análise
12.
Front Plant Sci ; 13: 916287, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237496

RESUMO

Salinity severely inhibits growth and reduces yield of salt-sensitive plants like wheat, and this effect can be alleviated by plant growth regulators and phytohormones, among which abscisic acid (ABA) plays a central role in response to various stressful environments. ABA is highly photosensitive to light disruption, which this limits its application. Here, based on pyrabactin (a synthetic ABA agonist), we designed and synthesized a functional analog of ABA and named B2, then evaluated its role in salt resistance using winter wheat seedlings. The phenotypes showed that B2 significantly improved the salt tolerance of winter wheat seedlings by elevating the biomass. The physiological analysis found that B2 treatment reduced the generation rate of O2 -, electrolyte leakage, the content of proline, and the accumulation of malonaldehyde (MDA) and H2O2 and also significantly increased the contents of endogenous hormones zeatin riboside (ZA) and gibberellic acid (GA). Further biochemical analysis revealed that the activities of various antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX), were enhanced by B2, and the activities of antioxidase isozymes SOD3, POD1/2, and APX1/2 were particularly increased, largely resembling ABA treatment. The abiotic stress response-related gene TaSOS1 was significantly upregulated by B2, while the TaTIP2;2 gene was suppressed. In conclusion, an ABA analog B2 was capable to enhance salt stress tolerance in winter wheat seedlings by stimulating the antioxidant system, providing a novel regulator for better survival of crops in saline soils and improving crop yield.

13.
Front Plant Sci ; 12: 764625, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35154173

RESUMO

Liriope spicata is an evergreen perennial ornamental groundcover with a strong freezing tolerance. However, the molecular mechanism underlying the freezing tolerance in L. spicata remains unclear. In this study, a comprehensive investigation of L. spicata freezing tolerance was conducted at the levels of physiology and biochemistry, metabolite, and transcript during the stress treatment. There were 581 unique differentially expressed metabolites (DEMs) and 10,444 unique differentially expressed genes (DEGs) between freezing treatment and normal cultured plant in leaves. Integrated analysis of metabolomics and transcriptomics showed that flavonoid biosynthesis, carbohydrate metabolism, amino acid metabolism, lipid metabolism, and signal transduction pathways were prominently enriched in response to the freezing stress in L. spicata. Now, we identified genes and metabolites involved in the flavonoid pathway, abscisic acid (ABA) biosynthesis, and the oxidative synthesis pathway of nitric oxide (NO), which may form a regulatory network and play a synergistic effect in osmotic adjustment, reactive oxygen species (ROS) homeostasis, and stomatal closure under freezing stress. These results offer a comprehensive network of flavonoids, ABA, and NO comodulating the freezing tolerance in L. spicata.

14.
Front Microbiol ; 11: 1362, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793123

RESUMO

Coronatine (COR) is a new type of plant growth regulator that is produced by Pseudomonas syringae pathovars and plays an important role in modulating plant growth, development, and tolerance to multiple stresses. However, the factors affecting COR production are not very clear. In this study, the effects of FeCl3 on COR production were researched. The data-independent acquisition (DIA) approach, which is a proteomic quantitative analysis method, was applied to quantitatively trace COR production and proteomic changes in P. syringae pv. tomato DC3000 under different FeCl3 culture conditions. The results showed that COR production increased with the addition of FeCl3 and that there was significant upregulation in the expression of proteins related to COR synthesis and regulation. In addition, FeCl3 also affected the expression of related proteins involved in various metabolic pathways such as glycolysis and the tricarboxylic acid cycle. Moreover, various precursors such as isoleucine and succinate semialdehyde, as well as other related proteins involved in the COR synthesis pathway, were significantly differentially expressed. Our findings revealed the dynamic regulation of COR production in response to FeCl3 at the protein level and showed the potential of using the DIA method to track the dynamic changes of the P. syringae pv. tomato DC3000 proteome during COR production, providing an important reference for future research on the regulatory mechanism of COR biosynthesis and theoretical support for COR fermentation production.

15.
J Photochem Photobiol B ; 158: 99-104, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26963431

RESUMO

Photosensitivity causes serious drawback for abscisic acid (ABA) application, but preferable methods to stabilize the compound were not found yet. To select an efficient photoprotectant for the improvement of photostability and bioactivity of ABA when exposed to UV light, we tested the effects of a photostabilizer bis(2,2,6,6-tetramethyl-4-piperidinyl) sebacate (HS-770) and two UV absorbers 2-hydroxy-4-n-octoxy-benzophenone (UV-531) and 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid (BP-4) with or without HS-770 on the photodegradation of ABA. Water soluble UV absorber BP-4 and oil soluble UV absorber UV-531 showed significant photo-stabilizing capability on ABA, possibly due to competitive energy absorption of UVB by the UV absorbers. The two absorbers showed no significant difference. Photostabilizer HS-770 accelerated the photodegradation of ABA and did not improve the photo-stabilizing capability of BP-4, likely due to no absorption in UVB region and salt formation with ABA and BP-4. Approximately 26% more ABA was kept when 280mg/l ABA aqueous solution was irradiated by UV light for 2h in the presence of 200mg/l BP-4. What's more, its left bioactivity on wheat seed (JIMAI 22) germination was greatly kept by BP-4, comparing to that of ABA alone. The 300 times diluent of 280mg/l ABA plus 200mg/l BP-4 after 2h irradiation showed more than 13% inhibition on shoot and root growth of wheat seed than that of ABA diluent alone. We concluded that water soluble UV absorber BP-4 was an efficient agent to keep ABA activity under UV radiation. The results could be used to produce photostable products of ABA compound or other water soluble agrichemicals which are sensitive to UV radiation. The frequencies and amounts of the agrichemicals application could be thereafter reduced.


Assuntos
Ácido Abscísico/metabolismo , Raios Ultravioleta , Ácido Abscísico/química
16.
Pest Manag Sci ; 70(3): 462-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23765738

RESUMO

BACKGROUND: A good knowledge in wetting behavior of pesticide spray liquid on plant surface is crucial to spray applications. Difference in leaf surface wettability would result in obvious changes in spray wetting behavior. The aim of this paper is to obtain the changes of wettability during different growth periods. RESULTS: The contact angle (CA) of rice leaf for each liquid increased with rice growth. No significant difference was found between cultivars. The CA was found to be correlated with the polar component of liquid surface tension. The square of the polar component was also found to be highly significant indicating that the relationship between these two properties was not a simple linear one. The surface energy of each plant surface decreased as the plants aged. This was also true of each part of the surface energy. However, no obvious difference on the proportion of the components was found among different cultivars and stages. CONCLUSIONS: The changes in value of CA and surface free energy (SFE) both reflect the changes of the leaf surface wettability, while the SFE value shows better in wettability characterizing. Obvious rice leaf wettability changes were found on different development stages, which may be beneficial for researches in agrochemical sprays wetting and spreading behavior. Factors influencing these alterations were discussed.


Assuntos
Oryza/química , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Biofísica/métodos , Oryza/classificação , Oryza/crescimento & desenvolvimento , Folhas de Planta/classificação , Propriedades de Superfície , Molhabilidade
17.
J Agric Food Chem ; 58(5): 2726-9, 2010 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-20050666

RESUMO

A novel macrolactam fungicide candidate (7B3) and a novel aza-macrolactone fungicide candidate (D1) were designed and synthesized, and the bioassay showed that both displayed excellent fungicidal activity against Rhizoctonia solani Kuhn. To elucidate the biochemical mode of action of the two compounds against R. solani and illustrate the similarities and differences of action mechanism resulting from subtle differences in structure of the two compounds, the effects of the two compounds on the ultrastructure of hyphae, electrolyte leakage, and respiration of mycelia cell suspension caused by 7B3 or D1 were studied. The results showed that the two compounds had very similar modes of action. Both induced irregular swelling of hyphae, vacuolation of cytoplasm, and thickening of cell wall. The conductivity of mycelia cell suspension increased in the presence of 7B3 or D1, which indicated that the two compounds had a similar effect on cell membrane permeability. In addition, both 7B3 and D1 were insufficient in inhibiting the respiration of mycelia.


Assuntos
Fungicidas Industriais/farmacologia , Compostos Macrocíclicos/farmacologia , Rhizoctonia/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Rhizoctonia/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA