RESUMO
Unilateral dopamine (DA) depletion produces ipsiversive turning behaviour, and the injection of DA receptor agonists can produce contraversive turning, but the underlying mechanisms remain unclear. We conducted in vivo recording and pharmacological and optogenetic manipulations to study the role of DA and striatal output in turning behaviour. We used a video-based tracking programme while recording single unit activity in both putative medium spiny projection neurons (MSNs) and fast-spiking interneurons (FSIs) in the dorsal striatum bilaterally. Our results suggest that unilateral DA depletion reduced striatal output from the depleted side, resulting in asymmetric striatal output. Depletion systematically altered activity in both MSNs and FSIs, especially in neurons that increased firing during turning movements. Like D1 agonist SKF 38393, optogenetic stimulation in the depleted striatum increased striatal output and reversed biassed turning. These results suggest that relative striatal outputs from the two cerebral hemispheres determine the direction of turning: Mice turn away from the side of higher striatal output and towards the side of the lower striatal output.
Assuntos
Corpo Estriado , Dopamina , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Animais , Corpo Estriado/metabolismo , Agonistas de Dopamina , Interneurônios/fisiologia , Camundongos , Neurônios/fisiologia , Receptores de Dopamina D1/metabolismoRESUMO
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective therapy for the motor symptoms of Parkinson's disease (PD). However, the neural elements mediating symptom relief are unclear. A previous study concluded that direct optogenetic activation of STN neurons was neither necessary nor sufficient for relief of parkinsonian symptoms. However, the kinetics of the channelrhodopsin-2 (ChR2) used for cell-specific activation are too slow to follow the high rates required for effective DBS, and thus the contribution of activation of STN neurons to the therapeutic effects of DBS remains unclear. We quantified the behavioral and neuronal effects of optogenetic STN DBS in female rats following unilateral 6-hydroxydopamine (6-OHDA) lesion using an ultrafast opsin (Chronos). Optogenetic STN DBS at 130 pulses per second (pps) reduced pathologic circling and ameliorated deficits in forelimb stepping similarly to electrical DBS, while optogenetic STN DBS with ChR2 did not produce behavioral effects. As with electrical DBS, optogenetic STN DBS exhibited a strong dependence on stimulation rate; high rates produced symptom relief while low rates were ineffective. High-rate optogenetic DBS generated both increases and decreases in firing rates of single neurons in STN, globus pallidus externa (GPe), and substantia nigra pars reticular (SNr), and disrupted ß band oscillatory activity in STN and SNr. High-rate optogenetic STN DBS can indeed ameliorate parkinsonian motor symptoms through reduction of abnormal oscillatory activity in the STN-associated neural circuit, and these results highlight that the kinetic properties of opsins have a strong influence on the effects of optogenetic stimulation.SIGNIFICANCE STATEMENT Whether STN local cells contribute to the therapeutic effects of subthalamic nucleus (STN) deep brain stimulation (DBS) in Parkinson's disease (PD) remains unclear. We re-examined the role of STN local cells in mediating the symptom-relieving effects of STN DBS using cell type-specific optogenetic stimulation with a much faster opsin, Chronos. Direct optogenetic stimulation of STN neurons was effective in treating the symptoms of parkinsonism in the 6-hydroxydopamine (6-OHDA) lesion rat. These results highlight that the kinetic properties of opsins can have a strong influence on the effects of optogenetic activation/inhibition and must be considered when employing optogenetic to study high-rate neural stimulation.
Assuntos
Estimulação Encefálica Profunda/métodos , Movimento , Optogenética/métodos , Transtornos Parkinsonianos/fisiopatologia , Núcleo Subtalâmico/fisiopatologia , Animais , Ritmo beta , Potenciais Evocados , Feminino , Globo Pálido/fisiopatologia , Opsinas/genética , Opsinas/metabolismo , Transtornos Parkinsonianos/terapia , Ratos , Ratos Sprague-Dawley , Substância Negra/fisiopatologia , Núcleo Subtalâmico/metabolismoRESUMO
The role of higher-order thalamic structures in sensory processing remains poorly understood. Here, we used the ferret (Mustela putorius furo) as a novel model species for the study of the lateral posterior (LP)-pulvinar complex and its structural and functional connectivity with area 17 [primary visual cortex (V1)]. We found reciprocal anatomical connections between the lateral part of the LP nucleus of the LP-pulvinar complex (LPl) and V1. In order to investigate the role of this feedback loop between LPl and V1 in shaping network activity, we determined the functional interactions between LPl and the supragranular, granular and infragranular layers of V1 by recording multiunit activity and local field potentials. Coherence was strongest between LPl and the supragranular V1, with the most distinct peaks in the delta and alpha frequency bands. Inter-area interaction measured by spike-phase coupling identified the delta frequency band being dominated by the infragranular V1 and multiple frequency bands that were most pronounced in the supragranular V1. This inter-area coupling was differentially modulated by full-field synthetic and naturalistic visual stimulation. We also found that visual responses in LPl were distinct from those in V1 in terms of their reliability. Together, our data support a model of multiple communication channels between LPl and the layers of V1 that are enabled by oscillations in different frequency bands. This demonstration of anatomical and functional connectivity between LPl and V1 in ferrets provides a roadmap for studying the interaction dynamics during behaviour, and a template for identifying the activity dynamics of other thalamo-cortical feedback loops.
Assuntos
Neurônios/fisiologia , Pulvinar/citologia , Pulvinar/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia , Potenciais de Ação , Animais , Ondas Encefálicas , Feminino , Furões , Vias Neurais/citologia , Vias Neurais/fisiologia , Estimulação LuminosaRESUMO
In whisking rodents, object location is encoded at the receptor level by a combination of motor and sensory related signals. Recoding of the encoded signals can result in various forms of internal representations. Here, we examined the coding schemes occurring at the first forebrain level that receives inputs necessary for generating such internal representations--the thalamocortical network. Single units were recorded in 8 thalamic and cortical stations in artificially whisking anesthetized rats. Neuronal representations of object location generated across these stations and expressed in response latency and magnitude were classified based on graded and binary coding schemes. Both graded and binary coding schemes occurred across the entire thalamocortical network, with a general tendency of graded-to-binary transformation from thalamus to cortex. Overall, 63% of the neurons of the thalamocortical network coded object position in their firing. Thalamocortical responses exhibited a slow dynamics during which the amount of coded information increased across 4-5 whisking cycles and then stabilized. Taken together, the results indicate that the thalamocortical network contains dynamic mechanisms that can converge over time on multiple coding schemes of object location, schemes which essentially transform temporal coding to rate coding and gradual to labeled-line coding.
Assuntos
Potenciais de Ação , Modelos Neurológicos , Núcleos Posteriores do Tálamo/fisiologia , Córtex Somatossensorial/fisiologia , Percepção Espacial/fisiologia , Tato/fisiologia , Núcleos Ventrais do Tálamo/fisiologia , Animais , Masculino , Vias Neurais/fisiologia , Estimulação Física , Ratos , Ratos Wistar , Vibrissas/fisiologiaRESUMO
The dopaminergic projections to the basal ganglia have long been implicated in reward-guided behavior and decision-making, yet little is known about the role of the posterior pedunculopontine nucleus (pPPN), a major source of excitatory input to the mesolimbic dopamine system. Here we studied the contributions of the pPPN to decision-making under risk, using excitoxic lesions and reversible inactivation in rats. Rats could choose between two options - a small but certain reward on one lever; or a large but uncertain reward on the other lever. The overall payoff associated with each choice is the same, but the reward variance (risk) associated with the risky choice is much higher. In Experiment 1, we showed that excitotoxic lesions of the pPPN before training did not affect acquisition of lever pressing. But whereas the controls strongly preferred the safe choice, the lesioned rats did not. In Experiment 2, we found that muscimol inactivation of the pPPN also produced similar effects, but reversibly. These results show that permanent lesions or reversible inactivation of the pPPN both abolish risk aversion in decision-making.
Assuntos
Comportamento de Escolha/fisiologia , Núcleo Tegmental Pedunculopontino/fisiologia , Risco , Animais , Comportamento de Escolha/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Agonistas de Receptores de GABA-A/farmacologia , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Muscimol/farmacologia , Testes Neuropsicológicos , Núcleo Tegmental Pedunculopontino/efeitos dos fármacos , Núcleo Tegmental Pedunculopontino/fisiopatologia , Ratos Long-Evans , Recompensa , Assunção de Riscos , Análise e Desempenho de Tarefas , IncertezaRESUMO
Angelman syndrome (AS) is a neurodevelopmental disorder characterized by mental retardation and impaired speech. Because patients with this disorder often exhibit motor tremor and stereotypical behaviors, which are associated with basal ganglia pathology, we hypothesized that AS is accompanied by abnormal functioning of the striatum, the input nucleus of the basal ganglia. Using mutant mice with maternal deficiency of AS E6-AP ubiquitin protein ligase Ube3a (Ube3a(m-/p+) ), we assessed the effects of Ube3a deficiency on instrumental conditioning, a striatum-dependent task. We used whole-cell patch-clamp recording to measure glutamatergic transmission in the dorsomedial striatum (DMS) and dorsolateral striatum (DLS). Ube3a(m-/p+) mice were severely impaired in initial acquisition of lever pressing. Whereas the lever pressing of wild-type controls was reduced by outcome devaluation and instrumental contingency reversal, the performance of Ube3a(m-/p+) mice were more habitual, impervious to changes in outcome value and action-outcome contingency. In the DMS, but not the DLS, Ube3a(m-/p+) mice showed reduced amplitude and frequency of miniature excitatory postsynaptic currents. These results show for the first time a selective deficit in instrumental conditioning in the Ube3a deficient mouse model, and suggest a specific impairment in glutmatergic transmission in the associative corticostriatal circuit in AS.
Assuntos
Síndrome de Angelman/fisiopatologia , Condicionamento Operante , Corpo Estriado/fisiopatologia , Potenciais Pós-Sinápticos Excitadores , Síndrome de Angelman/metabolismo , Animais , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Deleção de Genes , Ácido Glutâmico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Potenciais Pós-Sinápticos em Miniatura , Neurônios/metabolismo , Neurônios/fisiologia , Especificidade de Órgãos , Sinapses/fisiologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismoRESUMO
CONTEXT: Traditional conductive adhesives based on epoxy resin system often encounter problems such as high brittleness and low heat resistance. Therefore, it is particularly important to improve the thermal and mechanical properties of the conductive adhesive. In this study, the effects of SWCNT-Ag and SWCNT fillers on the thermal properties of DGEBA/DETA/Ag conductive adhesive system were studied by using molecular dynamics to construct different cross-linking models. The final results show that the addition of SWCNT and SWCNT-Ag can significantly improve the thermal properties of the conductive adhesive. However, the nanosilver particles on the surface of SWCNT-Ag act as a bridge for the connection between SWCNT and Ag in the conductive adhesive. Therefore, SWCNT-Ag has a more positive impact on the thermal properties of DGEBA/DETA/Ag conductive adhesive system. METHODS: In this paper, the influence of SWCNT-Ag on the thermal properties of traditional DGEBA/DETA/Ag conductive adhesive system was studied by using Materials Studio software. The volume shrinkage, glass transition temperature, thermal expansion coefficient, and thermal conductivity of the material were calculated based on COMPASS force field. The thermal conductivity is calculated by using reverse non-equilibrium molecular dynamics method. Finally, it is found that SWCNT-Ag has a positive effect on the thermal properties of the conductive adhesive system by comparing several groups of calculation data.
RESUMO
Aerobic exercise has been shown to have established benefits on motor function in Parkinson's disease (PD). However, the impact of exercise on depressive symptoms in PD remains unclear. This study aimed to investigate the effects of regular exercise, specifically using a forced running wheel, on both motor performance and the prevalence of depression in a unilateral 6-OHDA-lesioned rat model of PD. The behavioral outcomes of exercise were assessed through the rotarod test (RT), forelimb adjusting step test (FAST), sucrose consumption test (SCT), and novelty sucrose splash test (NSST). Our data revealed evident depressive symptoms in the PD animals, characterized by reduced sucrose consumption in the SCT and diminished exploratory activity in the NSST compared to the naïve control group. Specifically, after 11 weeks of exercise, the PD exercise group demonstrated the most significant improvements in sucrose consumption in the SCT. Additionally, this group exhibited reduced immobility and increased exploratory behavior compared to the PD control group in the NSST. Furthermore, the PD exercise group displayed the greatest improvement in correcting forelimb stepping bias. Our results suggested that a regimen of running wheel exercise enhances motor abilities and mitigates the occurrence of depressive behaviors caused by 6-OHDA dopamine depletion in the PD rat model.
RESUMO
Herein, an N-coordinated Fe site dispersed in porous carbon frameworks (Fe-NC) fabricated from zeolitic imidazolate frameworks encapsulated with iron acetylacetonate (Fe(acac)3 @ZIFs) was employed to activate peroxymonosulfate (PMS) for the attenuation of sulfisoxazole (SIZ) and treating real hospital wastewater. The constructed Fe-NC/PMS system exhibited good catalytic stability for SIZ degradation, maintaining excellent degradation performance over multiple cycles with virtually no leaching. The quenching experiments, electron paramagnetic resonance (EPR) capture analyses, and semi-quantitative measurements showed that singlet oxygen (1O2) and high-valent metal-oxo species were mainly responsible for SIZ degradation by Fe-NC/PMS. Significantly, ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS) was used to trace 134 pharmaceutical contaminants in real hospital wastewater. Effective degradation was achieved for 87 % of the pharmaceutical contaminants by the Fe-NC/PMS process. Seventy-four pharmaceutical contaminants were eliminated. Taken together, this work successfully established the Fe-NC/PMS technology using the developed iron-based materials and explored its application to real hospital wastewater treatment, providing an eco-friendly and effective strategy for treating wastewater.
RESUMO
While deep brain stimulation (DBS) is widely employed for managing motor symptoms in Parkinson's disease (PD), its exact circuit mechanisms remain controversial. To identify the neural targets affected by therapeutic DBS in PD, we analyzed DBS-evoked whole brain activity in female hemi-parkinsonian rats using function magnetic resonance imaging (fMRI). We delivered subthalamic nucleus (STN) DBS at various stimulation pulse repetition rates using optogenetics, allowing unbiased examinations of cell-type specific STN feed-forward neural activity. Unilateral STN optogenetic stimulation elicited pulse repetition rate-dependent alterations of blood-oxygenation-level-dependent (BOLD) signals in SNr (substantia nigra pars reticulata), GP (globus pallidus), and CPu (caudate putamen). Notably, these manipulations effectively ameliorated pathological circling behavior in animals expressing the kinetically faster Chronos opsin, but not in animals expressing ChR2. Furthermore, mediation analysis revealed that the pulse repetition rate-dependent behavioral rescue was significantly mediated by optogenetically induced activity changes in GP and CPu, but not in SNr. This suggests that the activation of GP and CPu are critically involved in the therapeutic mechanisms of STN DBS.
RESUMO
While deep brain stimulation (DBS) is widely employed for managing motor symptoms in Parkinson's disease (PD), its exact circuit mechanisms remain controversial. To identify the neural targets affected by therapeutic DBS in PD, we analyzed DBS-evoked whole brain activity in female hemi-parkinsonian rats using functional magnetic resonance imaging (fMRI). We delivered subthalamic nucleus (STN) DBS at various stimulation pulse repetition rates using optogenetics, allowing unbiased examination of cell-type specific STN feedforward neural activity. Unilateral optogenetic STN DBS elicited pulse repetition rate-dependent alterations of blood-oxygenation-level-dependent (BOLD) signals in SNr (substantia nigra pars reticulata), GP (globus pallidus), and CPu (caudate putamen). Notably, this modulation effectively ameliorated pathological circling behavior in animals expressing the kinetically faster Chronos opsin, but not in animals expressing ChR2. Furthermore, mediation analysis revealed that the pulse repetition rate-dependent behavioral rescue was significantly mediated by optogenetic DBS induced activity changes in GP and CPu, but not in SNr. This suggests that the activation of GP and CPu are critically involved in the therapeutic mechanisms of STN DBS.
Assuntos
Estimulação Encefálica Profunda , Imageamento por Ressonância Magnética , Optogenética , Núcleo Subtalâmico , Animais , Estimulação Encefálica Profunda/métodos , Núcleo Subtalâmico/fisiologia , Núcleo Subtalâmico/diagnóstico por imagem , Optogenética/métodos , Feminino , Ratos , Ratos Sprague-Dawley , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologia , Doença de Parkinson/diagnóstico por imagem , Globo Pálido/fisiologia , Globo Pálido/diagnóstico por imagemRESUMO
Optimizing the performance of front silver paste is of great significance in improving the efficiency of the photoelectric conversion of crystalline silicon solar cells. As a conductive functional phase of silver paste, the structure and performance of silver powder have an important influence on the sintering process of silver paste and the conductivity of silver electrodes. Because of their two-dimensional structure, flake silver powders can effectively increase the contact area with other silver powders and silicon cells before sintering. Additionally, flake silver particles have higher surface energy and sintering activity than spherical silver particles of the same particle size. However, recent research has mainly focused on the influence of the particle size of silver powder. This paper fills the research gap regarding the morphology of silver powders and clarifies the influence of flake silver powders on the performance of silver paste. The influence of the ratio of spherical silver powder to flake silver powder in silver paste on the sheet resistance, adhesion, and specific contact resistivity of silver film after sintering at 800 °C was studied, and the optimal ratio was determined according to a cross-sectional contact picture of the silver film. The results showed that with the increase in the mass fraction of the flake silver powder, the sheet resistance of the sintered silver film gradually increased, the adhesion first increased and then decreased, and the specific contact resistance first decreased and then increased. When the flake silver powder content was 0%, the minimum sheet resistance of the silver film was 2.41 m Ω/â. When the flake silver powder content was 30%, the maximum adhesion of the silver film was 6.07 N. When the flake silver powder content was 50%, the minimum specific contact resistivity of the silver film was 0.25 Ω·cm2. In conclusion, when the flake silver powder content was 30%, the comprehensive performance of the silver film was the best.
RESUMO
Hyperactivity of the orexin system within the paraventricular nucleus (PVN) has been shown to contribute to increased sympathetic nerve activity (SNA) and blood pressure (BP) in rodent animals. However, the underlying molecular mechanisms remain unclear. Here, we test the hypothesis that orexin system activation stimulates calcium/calmodulin-dependent kinase II (CaMKII) expression and activation, and stimulation of CaMKII expressing PVN neurons increases SNA and BP. Real-time PCR and/or western blot were carried out to test the effect of orexin-A administration on CaMKII expression in the PVN of normal Sprague Dawley (SD) rats and orexin receptor 1 (OX1R) expressing PC12 cells. Immunostaining was performed to assess OX1R cellular localization in the PVN of SD rats as well as orexin-A treatment on CaMKII activation in cultured hypothalamic neurons. In vivo sympathetic nerve recordings were employed to test the impact of optogenetic stimulation of CaMKII-expressing PVN neurons on the renal SNA (RSNA) and BP. The results showed that intracerebroventricular injection of orexin-A into the SD rat increases mRNA expression of CaMKII subunits in the PVN. In addition, Orexin-A treatment increases CaMKII expression and its phosphorylation in OX1R-expressing PC12 cells. Furthermore, Orexin-A treatment increases CaMKII activation in cultured hypothalamic neurons from neonatal SD rats. Finally, optogenetic excitation of PVN CaMKII-expressing neurons results in robust increases in RSNA and BP in SD rats. Our results suggest that increased orexin system activity activates CaMKII expression in cardiovascular relevant regions, and this may be relevant to the downstream cardiovascular effects of CaMKII.
RESUMO
A(2A) receptors are a major class of G-protein-coupled receptors for adenosine. Highly expressed in the striatum, on the projection neurons giving rise to the striatopallidal or "indirect" pathway, they have been implicated in sleep, addiction, and other processes, yet their role in the control of striatal circuits and behavior remains unclear. Using established assays from the instrumental learning paradigm, we showed that mice with striatum-specific deletion of A(2A) receptors were selectively impaired in habit formation. After training that generated habitual lever pressing in wild-type controls, the performance of striatum-specific A(2A) knock-out mice remained goal directed, being highly sensitive to outcome devaluation and reversal of the action-outcome contingency. These data demonstrate a critical role for A(2A) receptors on striatopallidal medium spiny projection neurons in shaping behavior and decision making, providing the first instance of a selective alteration in instrumental learning after striatum-specific genetic manipulations.
Assuntos
Corpo Estriado/metabolismo , Deleção de Genes , Hábitos , Deficiências da Aprendizagem/genética , Receptor A2A de Adenosina/deficiência , Receptor A2A de Adenosina/genética , Análise de Variância , Animais , Comportamento Animal , Condicionamento Operante/fisiologia , Extinção Psicológica/fisiologia , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Transgênicos , Esquema de ReforçoRESUMO
Long-lasting, high-resolution neural interfaces that are ultrathin and flexible are essential for precise brain mapping and high-performance neuroprosthetic systems. Scaling to sample thousands of sites across large brain regions requires integrating powered electronics to multiplex many electrodes to a few external wires. However, existing multiplexed electrode arrays rely on encapsulation strategies that have limited implant lifetimes. Here, we developed a flexible, multiplexed electrode array, called "Neural Matrix," that provides stable in vivo neural recordings in rodents and nonhuman primates. Neural Matrix lasts over a year and samples a centimeter-scale brain region using over a thousand channels. The long-lasting encapsulation (projected to last at least 6 years), scalable device design, and iterative in vivo optimization described here are essential components to overcoming current hurdles facing next-generation neural technologies.
Assuntos
Mapeamento Encefálico , Roedores , Animais , Encéfalo , Eletrodos Implantados , Microeletrodos , PrimatasRESUMO
In active sensation, sensory information is acquired via movements of sensory organs; rats move their whiskers repetitively to scan the environment, thus detecting, localizing, and identifying objects. Sensory information, in turn, affects future motor movements. How this motor-sensory-motor functional loop is implemented across anatomical loops of the whisker system is not yet known. While inducing artificial whisking in anesthetized rats, we recorded the activity of individual neurons from three thalamic nuclei of the whisker system, each belonging to a different major afferent pathway: paralemniscal, extralemniscal (a recently discovered pathway), or lemniscal. We found that different sensory signals related to active touch are conveyed separately via the thalamus by these three parallel afferent pathways. The paralemniscal pathway conveys sensor motion (whisking) signals, the extralemniscal conveys contact (touch) signals, and the lemniscal pathway conveys combined whisking-touch signals. This functional segregation of anatomical pathways raises the possibility that different sensory-motor processes, such as those related to motion control, object localization, and object identification, are implemented along different motor-sensory-motor loops.
Assuntos
Núcleos Talâmicos/fisiologia , Tato/fisiologia , Vibrissas/fisiologia , Vias Aferentes/fisiologia , Animais , Masculino , Estimulação Física , Ratos , Ratos Wistar , Limiar Sensorial/fisiologia , Núcleos Talâmicos/anatomia & histologiaRESUMO
Reliable single unit neuron recordings from chronically implanted microelectrode arrays (MEAs) are essential tools in the field of neural engineering. However, following implantation, MEAs undergo a foreign body response that functionally isolates them from the brain and reduces the useful longevity of the array. We tested a novel electrodeposited platinum-iridium coating (EPIC) on penetrating recording MEAs to determine if it improved recording performance. We chronically implanted the arrays in rats and used electrophysiological and histological measurements to compare quantitatively the single unit recording performance of coated vs. uncoated electrodes over a 12-week period. The coated electrodes had substantially lower impedance at 1â¯kHz and reduced noise, increased signal-to-noise ratio, and increased number of discernible units per electrode as compared to uncoated electrodes. Post-mortem immunohistochemistry showed no significant differences in the immune response between coated and uncoated electrodes. Overall, the EPIC arrays provided superior recording performance than uncoated arrays, likely due to lower electrode impedance and reduced noise.
Assuntos
Materiais Revestidos Biocompatíveis/química , Eletrodos Implantados , Galvanoplastia , Irídio/química , Platina/química , Animais , Impedância Elétrica , Feminino , Microeletrodos , Ratos Sprague-DawleyRESUMO
Higher-order visual thalamus plays a fundamental but poorly understood role in attention-demanding tasks. To investigate how neuronal dynamics in higher-order visual thalamus are modulated by sustained attention, we performed multichannel electrophysiological recordings in the lateral posterior-pulvinar complex (LP/pulvinar) in the ferret (Mustela putorius furo). We recorded single unit activity and local field potential (LFP) during the performance of the five-choice serial reaction time task (5-CSRTT), which is used in both humans and animals as an assay of sustained attention. We found that half of the units exhibited an increasing firing rate during the delay period before stimulus onset (attention-modulated units). In contrast, the non-attention-modulated units responded to the stimulus, but not during the delay period. Spike-field coherence (SFC) of only the attention-modulated neurons significantly increased from the start of the delay period until screen touch, predominantly in the θ frequency band. In addition, θ power and θ/γ phase amplitude coupling (PAC) were elevated throughout the delay period. Our findings suggest that the θ oscillation plays a central role in orchestrating thalamic signaling during sustained attention.
Assuntos
Potenciais de Ação/fisiologia , Atenção/fisiologia , Neurônios/fisiologia , Tálamo/fisiologia , Ritmo Teta/fisiologia , Percepção Visual/fisiologia , Animais , Eletrodos Implantados , Feminino , Furões , Ritmo Gama/fisiologia , Atividade Motora/fisiologia , Vias Visuais/fisiologiaRESUMO
OBJECTIVE: The clinical use of microsignals recorded over broad cortical regions is largely limited by the chronic reliability of the implanted interfaces. APPROACH: We evaluated the chronic reliability of novel 61-channel micro-electrocorticographic (µECoG) arrays in rats chronically implanted for over one year and using accelerated aging. Devices were encapsulated with polyimide (PI) or liquid crystal polymer (LCP), and fabricated using commercial manufacturing processes. In vitro failure modes and predicted lifetimes were determined from accelerated soak testing. Successful designs were implanted epidurally over the rodent auditory cortex. Trends in baseline signal level, evoked responses and decoding performance were reported for over one year of implantation. MAIN RESULTS: Devices fabricated with LCP consistently had longer in vitro lifetimes than PI encapsulation. Our accelerated aging results predicted device integrity beyond 3.4 years. Five implanted arrays showed stable performance over the entire implantation period (247-435 d). Our regression analysis showed that impedance predicted signal quality and information content only in the first 31 d of recordings and had little predictive value in the chronic phase (>31 d). In the chronic phase, site impedances slightly decreased yet decoding performance became statistically uncorrelated with impedance. We also employed an improved statistical model of spatial variation to measure sensitivity to locally varying fields, which is typically concealed in standard signal power calculations. SIGNIFICANCE: These findings show that µECoG arrays can reliably perform in chronic applications in vivo for over one year, which facilitates the development of a high-density, clinically viable interface.
Assuntos
Eletrocorticografia/métodos , Polímeros , Estimulação Acústica , Algoritmos , Animais , Córtex Auditivo , Interfaces Cérebro-Computador , Impedância Elétrica , Eletrodos Implantados , Espaço Epidural , Feminino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Razão Sinal-RuídoRESUMO
Brains adapt to new situations by retuning their neurons. The most common form of neuronal adaptation, typically observed with repetitive stimulations of passive sensory organs, is depression (responses gradually decrease until stabilized). We studied cortical adaptation when stimuli are acquired by active movements of the sensory organ. In anesthetized rats, artificial whisking was induced at 5 Hz, and activity of individual neurons in layers 2-5 was recorded during whisking in air (Whisking condition) and whisking against an object (Touch condition). Response strengths were assessed by spike counts. Input-layer responses (layers 4 and 5a) usually facilitated during the whisking train, whereas superficial responses (layer 2/3) usually depressed. In layers 2/3 and 4, but not 5a, responses were usually stronger during touch trials than during whisking in air. Facilitations were specific to the protraction phase; during retraction, responses depressed in all layers and conditions. These dynamic processes were accompanied by a slow positive wave of activity progressing from superficial to deeper layers and lasting for approximately 1 s, during the transient phase of response. Our results indicate that, in the cortex, adaptation does not depend only on the level of activity or the frequency of its repetition but rather on the nature of the sensory information that is conveyed by that activity and on the processing layer. The input and laminar specificities observed here are consistent with the hypothesis that the paralemniscal layer 5a is involved in the processing of whisker motion, whereas the lemniscal barrels in layer 4 are involved in the processing of object identity.