RESUMO
The importance of the "gut-liver axis" in the pathogenesis of liver diseases has been revealed recently; which promotes the process of developing preventive and therapeutic strategies. However, considering that there are still many challenges in the medical treatment of liver diseases, potential preventive dietary intervention may be a good alternative choice. Plant-based foods have received much attention due to their reported health-promoting effects in targeting multiple pathways involved in the pathogenesis of liver diseases as well as the relative safety for general use. Based on the PubMed and Web of Science databases, this review emphatically summarizes the plant-based foods and their chemical constituents with reported effects to impact the LPS/TLR4 signaling pathway of gut-liver axis of various liver diseases, reflecting their health benefits in preventing/alleviating liver diseases. Moreover, some plant-based foods with potential gut-liver effects are specifically analyzed from the reported studies and conclusions. This review intends to provide readers an overview of the current progress in the field of this research topic. We expect to see more hepatoprotective measures for alleviating the current prevalence of liver diseases.
Assuntos
Microbioma Gastrointestinal , Hepatopatias , Humanos , Estudos Prospectivos , Fígado , Hepatopatias/prevenção & controleRESUMO
Amorphous and crystalline active pharmaceutical ingredients (APIs) are both widely studied for pulmonary delivery. The past research mainly studied the impact of solid-state properties on pharmacokinetic attributes; however, the influence of solid-state properties on aerosolization performance was much less studied. This study aimed to investigate the different aerosolization performances of amorphous and crystalline curcumin (Cur) stabilized with L-leucine. Cur was spray-dried with different concentrations of L-leucine (0, 5, 20, 35, and 50%, w/w) as both solution-based and suspension-based formulations to acquire amorphous and crystalline Cur powders. The physicochemical properties of the spray-dried powders, including particle size, morphology, and solid-state characteristics, were studied. The aerosolization performance as well as dissolution properties were evaluated. It was found that 35% (w/w) L-leucine or above led to the formation of amorphous Cur in the spray-dried powders, and the amorphous Cur powders exhibited higher FPF (70.8%, with 50% L-leucine, w/w) than the crystalline Cur formulations with an FPF at 56.3% (with 50% L-leucine, w/w). In conclusion, with a high concentration of L-leucine (35% or above) in the formulations, amorphous Cur would exhibit higher aerosolization efficiency than crystalline Cur. However, with a low concentration of L-leucine (20% or less) in the formulations, crystalline Cur would be preferred for more enhanced consideration.