Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Angew Chem Int Ed Engl ; : e202408453, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941108

RESUMO

Layer-stacking behaviors are crucial for two-dimensional covalent organic frameworks (2D COFs) to define their pore structure, physicochemical properties, and functional output. So far, fine control over the stacking mode without complex procedures remains a grand challenge. Herein, we proposed a "key-cylinder lock mimic" strategy to synthesize 2D COFs with a tunable layer-stacking mode by taking advantage of ionic liquids (ILs). The staggered (AB) stacking (unlocked) COFs were exclusively obtained by incorporating ILs of symmetric polarity and matching molecular size; otherwise, commonly reported eclipsed (AA) stacking (locked) COFs were observed instead. Mechanistic study revealed that AB stacking was induced by a confined interlocking effect (CIE) brought by anions and bulky cations of the ILs inside pores ("key" and "cylinder", respectively). Excitingly, this strategy can speed up production rate of crystalline powders (e.g., COF-TAPT-Tf@BmimTf2N in merely 30 minutes) under mild reaction conditions. This work highlights the enabling role of ILs to tailor the layer stacking of 2D COFs and promotes further exploration of their stacking mode-dependant applications.

2.
J Am Chem Soc ; 145(50): 27718-27727, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38083846

RESUMO

The intrinsic fragility and insoluble nature of covalent organic frameworks (COFs) have strongly impeded their processability for practical applications. Herein, an aqueous-based sol-gel synthetic strategy is reported for the synthesis and shaping of COFs with task-specific applications that satisfy the principles of green chemistry for gram-scale production of crystalline materials. Our successful approach involves three pivotal aspects: the "prodrug mimic" design of water-soluble monomers, the utilization of hydrolyzable bonds, and the manipulation of reaction kinetics. The generality of the method is demonstrated by the successful preparation of representative high-surface area two-dimensional (2D) COFs with several commonly used amines. By virtue of this strategy, a COF colloidal dispersion is achieved and can be formulated into processable fluids, structured films, and COF monoliths. Remarkably, the obtained lightweight (∼0.020 g cm-3) and robust aerogels displayed outstanding adsorption capacity (exceeding 57 times its own weight) toward a variety of organic solvents and exhibited superior thermal insulating properties compared to the widely used sponge and cotton. This work demonstrates a versatile strategy for the synthesis and shaping of processable COF materials in water that will contribute to the development of COF monoliths for advanced applications.

3.
Macromol Rapid Commun ; 44(21): e2300340, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37638476

RESUMO

The development of robust and industrially viable catalysts from plastic waste is of great significance, and the facile construction of high performance heterogeneous catalyst systems for phenol-quinone conversions remains a grand challenge. Herein, a feasible strategy is demonstrated to reclaim Styrofoam into hierarchically porous nickel-salen-loaded hypercrosslinked polystyrene (PS@Ni-salen) catalysts with high activities through an unusual autocatalytic coupling route. The salen is immobilized onto PS chain by Friedel-Crafts alkylation of benzyl chloride derivatives, and the generated hydrogen chloride coordinately promotes the simultaneous crosslinking and bridge formation between aromatic rings via a Scholl coupling route, leading to hierarchically porous networks. After the metallization with Ni, the resultant networks exhibit high catalytic activity for the oxidation of 2,3,6-trimethylphenol to 2,3,5-trimethyl-1,4-benzoquinone under mild conditions (303 K, 1 bar of O2 ). This catalyst also demonstrates attractive recycling performance without an obvious loss of catalytic efficiency over five consecutive cycles. This methodology might provide a potential sustainable alternative to construct environmentally benign and cost-effective catalysts for specific organic transformation.


Assuntos
Oxigênio , Poliestirenos , Porosidade
4.
Macromol Rapid Commun ; 44(24): e2300451, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37795776

RESUMO

Lithium-sulfur (Li-S) battery features a high theoretical energy density, but the shuttle of soluble polysulfides between the two electrodes often results in a rapid capacity decay. Herein, a straightforward electrostatic adsorption strategy based on a cross-linked polyimidazolium separator as a snaring shield of polysulfides is reported, which suppresses the undesirable migration of polysulfides to the anode. The porous ionic network (PIN)-modified carbon nanotubes (CNTs) are successfully prepared and coated onto a commercial porous polypropylene membrane in a vacuum-filtration step. The favorable affinity of the imidazolium ring toward polysulfide via the polar interaction and the electrostatic effect of ions mitigates the undesirable shuttle of polysulfides in the electrolyte, improving the Li─S battery in terms of rate performance and cycling life. Compared to the reference PIN-free CNT-coated separator, the PIN/CNT-coated one has an increased initial capacity of 1.3 folds (up to 1394.8 mAh g-1 for PIN/CNT/PP-3) at 0.1 C.


Assuntos
Lítio , Nanotubos de Carbono , Porosidade , Íons , Enxofre
5.
Angew Chem Int Ed Engl ; 62(34): e202306039, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37314932

RESUMO

Development of thermosets that can be repeatedly recycled via both chemical route (closed-loop) and thermo-mechanical process is attractive and remains an imperative task. In this work, we reported a triketoenamine based dynamic covalent network derived from 2,4,6-triformylphloroglucinol and secondary amines. The resulting triketoenamine based network does not have intramolecular hydrogen bonds, thus reducing its π-electron delocalization, lowering the stability of the tautomer structure, and enabling its dynamic feature. By virtue of the highly reversible bond exchange, this novel dynamic covalent bond enables the easy construction of highly crosslinked and chemically reprocessable networks from commercially available monomers. The as-made polymer monoliths exhibit high mechanical properties (tensile strength of 79.4 MPa and Young's modulus of 571.4 MPa) and can undergo a monomer-network-monomer (yields up to 90 %) recycling mediated by an aqueous solution, with the new-generation polymer capable of restoring the material strength to its original state. In addition, owing to its dynamic nature, a catalyst-free and low-temperature reprogrammable covalent adaptable network (vitrimer) was achieved. The design concept reported herein can be applied to the development of other novel vitrimers with high repressibility and recyclability, and sheds light on future design of sustainable polymers with minimal environmental impact.

6.
Angew Chem Int Ed Engl ; 62(27): e202304173, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37132083

RESUMO

Constructing photocatalyst systems to functionalize the inert C-H bonds has attracted extensive research interest. However, purposeful modulation of interfacial charge transfer in heterostructures remains a challenge, as it usually suffers from sluggish kinetics. Reported herein is an easy strategy to construct the heteroatom-induced interface for developing the titanium-organic frameworks (MOF-902) @ thiophene-based covalent triazine frameworks (CTF-Th) nanosheets S-scheme heterojunctions with controllable oxygen vacancies (OVs). Specifically, Ti atoms were first anchored onto the heteroatom site of CTF-Th nanosheets, and then grown into MOF-902 via an interfacial Ti-S linkage, generating OVs. Using in situ X-ray photoelectron spectroscopy (XPS), extended X-ray absorption fine structure (EXAFS) spectroscopy and density functional theory (DFT) calculations, the enhanced interfacial charge separation and transfer induced by moderate OVs in the pre-designed S-scheme nanosheets was validated. The heterostructures exhibited an improved efficiency in photocatalytic C3-acylation of indoles under mild conditions with a yield 8.2 times larger than pristine CTF-Th or MOF-902 and enabled an extended scope of substrates (15 examples). This performance is superior to state-of-the-art photocatalyst and can be retained, without significant loss, after 12 consecutive cycles.

7.
Macromol Rapid Commun ; 43(15): e2200170, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35471590

RESUMO

Although considerable efforts have been devoted to novel ionic porous networks (IPNs), the development of them in a scalable manner to tackle the issues in pollutant treatment by adsorption remains an imminent challenge. Herein, inspired by natural spider webs, a knitting copolymerization strategy is proposed to construct analogue triazolium salt-based porous networks (IPN-CSUs). It is not only convenient to incorporate the cationic motifs into the network, but easy to control over the contents of ionic pairs. The as-prepared IPN-CSUs displays a high surface area of 924 m2 g-1 , a large pore volume of 1.27 cm3 g-1 and abundant ionic sites, thereby exhibiting fast adsorption rate and high adsorption capacity towards organic and inorganic pollutants. The kinetics and thermodynamics study reveal that the adsorption followed a pseudo-second-order kinetic model and Langmuir isotherm model correspondingly. Specifically, the maximum adsorption capacity of the IPN-CSUs is as high as 1.82 mg mg- 1 for permanganate ions and up to 0.54 mg mg-1 for methyl orange, which stands out among the previously reported porous adsorbents so far. It is expected that the strategy reported herein can be extended to the development of other potential efficient adsorbents in water purifications.


Assuntos
Corantes , Poluentes Químicos da Água , Adsorção , Ânions , Cinética , Porosidade , Sais
8.
Macromol Rapid Commun ; 41(7): e2000006, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32096912

RESUMO

The development of new photocatalytic platforms using novel semiconductor material is an important challenge. Herein, a sp2 carbon-conjugated covalent triazine polymer (sp2 c-CTP-4), featuring a vinylene bridge and extended π-conjugation, is prepared as a highly efficient photocatalyst for degradation of methylene blue. sp2 c-CTP-4 exhibits substantial semiconducting properties such as enhanced charge transfer and prolonged lifetime of carriers compared to its counterparts with CN or CC connections, likely due to its extended π-delocalization with an unencumbered CC bridge. Moreover, benefiting from its high chemical stability, the as-made catalyst can be recycled five times with good retention of photocatalytic activity. This study provides a new pathway for constructing a robust platform for efficient photocatalysis and gives insight into the structure-property relationship of conjugated polymers.


Assuntos
Luz , Azul de Metileno/química , Polímeros/química , Triazinas/química , Catálise , Estrutura Molecular , Tamanho da Partícula , Processos Fotoquímicos , Compostos de Vinila/química
9.
Chemistry ; 24(12): 3030-3037, 2018 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-29288604

RESUMO

We demonstrate an environmentally friendly one-step soap-free emulsion polymerization strategy to develop fluorescent carbazole-based copolymer monodisperse microspheres for highly sensitive and selective detection of Fe3+ . The copolymer microspheres feature a stable spherical morphology with a narrow size distribution through regulating N-vinylcarbazole (NVCz) content (1.25-10.0 wt.%). Notably, the as-made microspheres exhibit a strong luminescence, tunable emission intensity and specific surface areas. Interestingly, the fluorescence of the copolymer microspheres can be selectively quenched by trace amounts of Fe3+ due to the oxidation of carbazole, and the quenching fluorescence can be facilely recovered by reduction with NaBH4 . Its excellent sensing performance is shown in terms of high sensitivity (low limit of detection, 1.3 µm), excellent selectivity, and rapid response rate, due to the porous nature of the copolymer microspheres. These results illustrate the copolymer microspheres obtained by simple preparative procedure without using expensive or toxic raw materials would serve as a high performance sensor for highly selective and recyclable detection of Fe3+ in aqueous medium.

10.
Phys Chem Chem Phys ; 18(16): 11323-9, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27054609

RESUMO

A series of novel azo-functionalized copolymerized networks (simply known as NOP-34 series) with tunable permanent microporosity and highly selective carbon dioxide capture are disclosed. The synthesis was accomplished by Zn-induced reductive cross-coupling copolymerization of two nitrobenzene-like building blocks with different 'internal molecular free volumes' (IMFVs), i.e., 2,7,14-trinitrotriptycene and 2,2',7,7'-tetranitro-9,9'-spirobifluorene, with different molar ratios. Increasing the content of spirobifluorene (SBF) segments with a smaller IMFV relative to that of triptycene leads to an unconventional rise-fall pattern in porosity. Unlike most reported porous copolymers whose surface area lies between the corresponding homopolymers, the copolymer NOP-34@7030 with 30% SBF segments unprecedentedly shows the largest Brunauer-Emmett-Teller specific surface area (up to 823 m(2) g(-1)) as well as promoted CO2 uptake abilities (from 2.31 to 3.22 mmol g(-1), at 273 K/1.0 bar). The 100% triptycene(TPC)-derived homopolymer (NOP-34@1000) with a moderate surface area shows the highest CO2/N2 IAST selectivity of 109 (273 K) among the five samples, surpassing most known nanoporous organic polymers. This may contribute significantly to our understanding of the relationship of IMFVs with the properties of copolymerized materials.

11.
Chemistry ; 21(38): 13357-63, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26213114

RESUMO

A novel metal-doping strategy was developed for the construction of iron-decorated microporous aromatic polymers with high small-gas-uptake capacities. Cost-effective ferrocene-functionalized microporous aromatic polymers (FMAPs) were constructed by a one-step Friedel-Crafts reaction of ferrocene and s-triazine monomers. The introduction of ferrocene endows the microporous polymers with a regular and homogenous dispersion of iron, which avoids the slow reunion that is usually encountered in previously reported metal-doping procedures, permitting a strong interaction between the porous solid and guest gases. Compared to ferrocene-free analogues, FMAP-1, which has a moderate BET surface area, shows good gas-adsorption capabilities for H2 (1.75 wt % at 77 K/1.0 bar), CH4 (5.5 wt % at 298 K/25.0 bar), and CO2 (16.9 wt % at 273 K/1.0 bar), as well as a remarkably high ideal adsorbed solution theory CO2 /N2 selectivity (107 v/v at 273 K/(0-1.0) bar), and high isosteric heats of adsorption of H2 (16.9 kJ mol(-1) ) and CO2 (41.6 kJ mol(-1) ).

12.
Macromol Rapid Commun ; 36(17): 1566-71, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26088466

RESUMO

A hypercrosslinked conjugated microporous polymer (HCMP-1) with a robustly efficient absorption and highly specific sensitivity to mercury ions (Hg(2+)) is synthesized in a one-step Friedel-Crafts alkylation of cost-effective 2,4,6-trichloro-1,3,5-triazine and dibenzofuran in 1,2-dichloroethane. HCMP-1 has a moderate Brunauer-Emmett-Teller specific surface (432 m(2) g(-1)), but it displays a high adsorption affinity (604 mg g(-1)) and excellent trace efficiency for Hg(2+). The π-π* electronic transition among the aromatic heterocyclic rings endows HCMP-1 a strong fluorescent property and the fluorescence is obviously weakened after Hg(2+) uptake, which makes the hypercrosslinked conjugated microporous polymer a promising fluorescent probe for Hg(2+) detection, owning a super-high sensitivity (detection limit 5 × 10(-8) mol L(-1)).


Assuntos
Mercúrio/isolamento & purificação , Polímeros/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Luminescência , Mercúrio/análise , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Org Lett ; 25(14): 2543-2547, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37018539

RESUMO

We report an efficient one-pot, two-step procedure for the modular synthesis of α-difunctionalized alkynes and trisubstituted allenes by sequential cross-coupling of benzal gem-diacetates with organozinc or -copper reagents in the absence of external transition metals. The intermediacy of propargylic acetates enables the divergent and selective synthesis of these valuable products. This method features its readily accessible substrates, relatively mild conditions, wide scope, and scalability in practical synthesis.

14.
Chem Commun (Camb) ; 59(56): 8731-8734, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37357533

RESUMO

Triazine-based covalent organic frameworks functionalized by thiol and thioether (COFS-CH3/COFS-SH) were designed and served as a platform that could bind with mercury ions specifically based on Hard-Soft-Acid-Base theory. As such, when employing COFs as a modifier in a carbon paste electrode (CPE), the COFS-CH3-modified CPE revealed an extraordinary performance (detection limit of 0.01 ppb; linear range of 0.1 to 1.0 ppb) and repeatability for electrochemical detection of trace mercury, even in real samples collected from tap or lake water. This innovative approach leverages the inherent properties of covalent organic frameworks (COFs) to enable highly sensitive and selective detection of target analytes.

15.
ACS Omega ; 7(15): 12772-12778, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35474804

RESUMO

Compatibilization of immiscible blends is critically important for developing high-performance polymer materials. In this work, an ionic liquid, 1-vinyl-3-butyl imidazole chloride, grafted polyamide 6 (PA6-g-IL(Cl)) with a quasi-block structure was used as a compatibilizer for an immiscible poly(vinylidene fluoride) (PVDF)/PA6 blend. The effects of two PA6-g-IL(Cl)s (E-2%-50K and E-8%-50K) on the morphology, crystallization behavior, mechanical properties, and surface resistance of the PVDF/PA6 blend were investigated systematically. It was found that the two types of PA6-g-IL(Cl)s had a favorable compatibilization effect on the PVDF/PA6 blend. Specifically, the morphology of the PVDF/PA6 = 60/40 blend transformed from a typical sea-island into a bicontinuous structure after incorporating E-8%-50K with a high degree of grafting (DG). In addition, the tensile strength of the PVDF/PA6/E-8%-50K blend reached 66 MPa, which is higher than that of PVDF, PA6 and the PVDF/PA6 blend. Moreover, the PVDF/PA6/E-8%-50K blend exhibited surface conductivity due to the conductive path offered by the bicontinuous structure and conductive ions offered by grafted IL(Cl). Differential scanning calorimetry (DSC) and wide-angle X-ray diffractometry (WAXD) results revealed that PA6-g-IL(Cl) exhibits different effects on the crystallization behavior of PVDF and PA6. The compatibilization mechanism was concluded to be based on the fact that the nongrafted PA6 blocks entangled with the PA6 chains, while the ionic liquid-grafted PA6 blocks interacted with the PVDF chains. This work offers a new strategy for the compatibilization of immiscible polymer blends.

16.
Polymers (Basel) ; 14(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36501646

RESUMO

It is considered to be one of the most effective strategies to prepare functionalized polypropylene (PP) materials via the melt grafting of polar monomers onto PP chains. However, the grafting efficiency of functional monomers is generally low. To achieve a high grafting efficiency, we explored the effect of tea polyphenols (C), which are good free radical scavengers, on the melt grafting of glycidyl methacrylate (GMA) onto PP chains initiated by dicumyl peroxide (DCP). Specifically, 0.5~3 wt% of tea polyphenols (C) were introduced to the PP/DCP/GMA melt blending system. The morphology, melt flow rate (MFR), thermal and mechanical properties of tea polyphenols (C) incorporated PP/DCP/GMA blends were investigated systematically. The results showed that the proper amount of tea polyphenols (C) (0.5~2 wt%) promoted the grafting of GMA. Unexpectedly, the PP backbone suffered from more severe degradation with the addition of tea polyphenols (C). The phenomena were ascribed to the reaction between phenolic hydroxyl groups of tea polyphenols (C) and epoxy groups of grafted GMA, which was revealed by the FTIR results. In addition, according to DSC and the tensile test, the co-grafting of GMA and tea polyphenols (C) improved the crystallization ability, yield strength and Young's modulus of the PP matrix.

17.
Carbohydr Polym ; 256: 117558, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33483060

RESUMO

Searching for green, recyclable and highly efficient catalyst for the synthesis of cyclic carbonates from CO2 is of great importance because it is profitable for reducing the greenhouse effects and meets the principles of green chemistry. Herein, a series of cellulose nanocrystals, either the pristine or modified ones (TEMPO oxidized and Co(III)salen immobilized), were explored as catalysts for cycloaddition of epoxides and carbon dioxide. The impact of surface properties on the performance of the as-made catalysts was investigated. Co(III)-salen grafted cellulose nanocrystals was proven to be the most effective catalyst in this study, which could afford excellent yield up to 99 % after 24 h even under low CO2 pressures of 0.1 MPa. They can be easily recovered and reused for at least 4 times, demonstrating their excellent stability. We found that the surface functional groups such as enriched sulfate or carboxylic groups could also account for the enhanced catalytic activity. This work highlights the applications of green and sustainable nanoparticles in a cycloaddition reaction and offers a sustainable solution in industrial catalysis related to CO2 conversions.


Assuntos
Dióxido de Carbono/química , Cobalto/química , Química Verde , Nanopartículas/química , Benzaldeídos/química , Carbonatos/química , Catálise , Celulose/química , Óxidos N-Cíclicos/química , Compostos de Epóxi/química , Espectroscopia de Ressonância Magnética , Metais/química , Fenol/química , Pressão , Espectroscopia de Infravermelho com Transformada de Fourier , Sulfatos/química , Propriedades de Superfície , Termogravimetria , Difração de Raios X
18.
Chem Sci ; 12(15): 5631-5637, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-34163776

RESUMO

Conjugated microporous polymers (CMPs) are cost-effective photocatalysts in organic transformations, while they are usually limited by the insufficient separation of photogenerated charges. Here we report a polarization strategy through molecular geometry optimization to promote the charge separation of CMPs. Three CMP photocatalysts with an alternative donor-acceptor skeleton and tunable symmetry were synthesized by the oxidative coupling of bis-carbazoles with electron-deficient bridges (benzene/pyridine/pyrimidine). Simply regulating the polarization of the starting monomers leads to tailorable porosity, photoelectric properties, and photocatalytic activity of the CMPs. They exhibited high efficiency in C-3 selenocyanation of indoles under visible-light and at room temperature, and pyridine-based CMPs with the largest dipole moment gave a yield of up to 94%, superior to their state-of-the-art photocatalyst counterparts. Photo-physical experiments combined with theoretical calculations further supported that the incorporation of the polarized linker introduced an internal electric field, benefitting efficient charge separation. This offered new insight into developing high-performance photocatalysts.

19.
ACS Appl Mater Interfaces ; 13(50): 60072-60083, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34882401

RESUMO

Developing photocatalysts to steer conversion of solar energy toward high-value-added fine chemicals represents a potentially viable approach to address the energy crisis and environmental issues. However, enablement of this conversion is usually impeded by the sluggish kinetic process for proton-coupled electron transfer and rapid recombination of photogenerated excitons. Herein, we report a simple and general structural expansion strategy to facilitate charge transfer in conjugated microporous polymers (CMPs) via engineering the donor surrounding the trifluoromethylphenyl core. The resulting CMPs combine high surface area, strong light-harvesting capabilities, and tunable optical properties endowed by extended π-conjugation; the optimized compound CbzCMP-5 generated from 9,9',9″-(2-(trifluoromethyl)benzene-1,3,5-triyl)tris(9H-carbazole) remarkably enhanced the photogenerated carrier transfer efficiency, enabling the functionalization of thiophenols toward thiocarbamates and 3-sulfenylindoles with high photocatalytic efficiency. Most importantly, the in-depth insights into the carrier-transfer processes open up new prospects on further optimization and rational design of photoactive polymers for efficient charge-transfer-mediated reactions.

20.
Chem Sci ; 12(48): 16065-16073, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35024128

RESUMO

Development of a covalent-organic framework (COF)-based Z-scheme heterostructure is a promising strategy for solar energy driven water splitting, but the construction of a COF-based Z-scheme heterostructure with well-defined architecture, large contact area and intimate contact interfaces is scarce. Herein, we fabricated a direct Z-scheme heterostructure COF-metal sulfide hybrid (T-COF@CdS) with shell-core architecture by self-polymerization of 1,3,5-benzenetricarboxaldehyde and 2,4,6-tris(4-aminophenyl)-1,3,5-triazine in situ on CdS. The formed C-S chemical bonding between T-COF and CdS could provide a very tight and stable interface. Owing to the properly staggered band alignment, strong interfacial interaction and large interfacial contact area between T-COF and CdS, a Z-scheme route for charge separation and transfer is realized, resulting in electron accumulation in CdS for H2O reduction. The obtained Z-scheme heterostructure T-COF@CdS-3 exhibits a high apparent quantum efficiency of 37.8% under 365 nm monochromatic light irradiation, and long-term stability arising from shell-core structures in which the T-COF shell protects the catalytic centers of CdS against deactivation, as well as acts as oxidation sites to avoid the photocorrosion of CdS. This work provides a strategy for the construction of a shell-core direct Z-scheme heterostructure photocatalyst for water splitting with high performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA