Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Proteomics ; 23(11): e2200345, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36739517

RESUMO

The yak (Bos grunniens) is a species adapted to the hypoxic environment in the plateau area. The heart is a hypoxia-sensitive organ involved in this adaptation. Herein, we used single-cell RNA-seq technology and clustering to determine the presence of 11 cell populations in the yak heart. We analyzed gene expression differences and expression patterns in each cell subpopulation at different altitudes. The cells related to altitude changes are mainly smooth muscle cells and vascular endothelial cells. Of the four transcription factors (TFs, MEF2B, FOXP4, ARID5A, and HES4) found in smooth muscle cells, only MEF2B was specifically expressed in vascular smooth muscle cells. Three key TFs (HNF1B, DMRTA1, and ARNTL2) were also found in the cardiomyocyte module. Compared with data extracted from low-altitude yak, we observed that the high altitude yak has enhanced contraction and relaxation of vascular smooth muscle cells and an increased metabolic level of cardiomyocytes. These may be strategies for the yak to adapt to high-altitude hypoxia environments.


Assuntos
Altitude , Transcriptoma , Animais , Bovinos , Células Endoteliais , Coração , Perfilação da Expressão Gênica
2.
BMC Dev Biol ; 21(1): 9, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879064

RESUMO

BACKGROUND: Yaks have a strong adaptability to the plateau environment, which can be attributed to the effective oxygen utilization rate of their lung tissue. Elastic fibre confers an important adaptive structure to the alveolar tissues in yaks. However, little research has been focused on the structural development of lung tissues and the expression levels of elastic fibres in yaks after birth. Therefore, this study aimed to investigate the morphological changes of elastic fibers and expression profiles of fibre-formation genes in yak lungs at different growth stages and the relationship between these changes and plateau adaptation. RESULTS: Histological staining was employed to observe the morphological changes in the lung tissue structure of yaks at four different ages: 1 day old, 30 days old, 180 days old and adult. There was no significant difference in the area of a single alveolus between the 1-day-old and 30-day-old groups (P-value > 0.05). However, the single alveolar area was gradually increased with an increase in age (P-value < 0.05). Elastic fibre staining revealed that the amount of elastic fibres in alveolar tissue was increased significantly from the ages of 30 days to 180 days (P-value < 0.05) and stabilized during the adult stage. Transcriptome analysis indicated that the highest levels of differentially expressed genes were found between 30 days of age and 180 days of age. KEGG analysis showed that PI3K-Akt signalling pathway and MAPK pathway, which are involved in fibre formation, accounted for the largest proportion of differentially expressed genes between 30 days of age and 180 days of age. The expression levels of 36 genes related to elastic fibre formation and collagen fibre formation were also analysed, and most of these genes were highly expressed in 30-day-old and 180-day-old yaks. CONCLUSIONS: The content of elastic fibres in the alveolar tissue of yaks increases significantly after birth, but this change occurs only from 30 days of age to 180 days of age. Our study indicates that elastic fibres can improve the efficiency of oxygen utilization in yaks under harsh environmental conditions.


Assuntos
Tecido Elástico , Pulmão/crescimento & desenvolvimento , Animais , Bovinos , Perfilação da Expressão Gênica , Morfogênese
3.
Environ Sci Technol ; 55(9): 6171-6183, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33843202

RESUMO

Cypermethrin (CMN) is a man-made insecticide, and its abuse has led to potential adverse effects, particularly in sensitive populations such as aquatic organisms. The present study was focused on the toxic phenotype and detoxification mechanism in grass carp (Ctenopharyngodon idella) after treatment with waterborne CMN (0.651 µg/L) for 6 weeks in vivo or 6.392 µM for 24 h in vitro. In vivo, we describe the toxic phenotype of the liver of grass carp in terms of pathological changes, serum transaminase levels, oxidative stress indexes, and apoptosis rates. RNA-Seq analysis (2 × 3 cDNA libraries) suggested a compromise of proteasome and oxidative phosphorylation signaling pathways under CMN exposure. Thus, these two pathways were chosen for the in vitro study, which suggested that the CMN intoxication-induced proteasome pathway caused hepatotoxicity in the liver cell line of grass carp (L8824 cells). Moreover, pretreatment with MG132, a proteasome inhibitor, displayed protection against the toxic effects of CMN by enhancing antioxidative and anti-inflammatory capability by directly inhibiting the proteasomal degradation of nuclear factor erythroid-2 related factor (Nrf2) and IκB-α, thus turning on the transcription of downstream genes of Nrf2 and NF-κB, respectively. Taken together, these results suggest proteasome activity as a reason for CMN-induced hepatotoxicity.


Assuntos
Carpas , Doença Hepática Induzida por Substâncias e Drogas , Animais , Carpas/metabolismo , Dieta , Proteínas de Peixes/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , Complexo de Endopeptidases do Proteassoma , Piretrinas , Espécies Reativas de Oxigênio/metabolismo
4.
Fish Shellfish Immunol ; 94: 761-768, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31585240

RESUMO

This study was designed to evaluate the effects of zinc on inflammation and tight junction (TJ) in different intestinal regions of common carp under sub-chronic arsenic insult. Fish were exposed to zinc (0, 1 mg/L) and arsenic trioxide (0, 2.83 mg/L) in individual or combination for a month. Inflammatory infiltration and TJ structure changes were displayed by H&E staining and transmission electron microscope. To further explore these changes, biochemical indicator (SOD), gene or protein expressions of inflammatory responses (NF-κB, IL-1ß, IL-6 and IL-8) and TJ proteins (Occludin, Claudins and ZOs) were determined. In the anterior intestine, arsenic decreased activity of SOD, mRNA levels of Occludin, Claudins and ZOs, increased mRNA levels of ILs. However, unlike the anterior intestine, arsenic has an upregulation effects of Occludin and Claudin-4 in the mid intestine. These anomalies induced by arsenic, except IL-8, were completely or partially recovered by zinc co-administration. Furthermore, transcription factor (NF-κB) nuclear translocation paralleled with its downstream genes in both intestinal regions. In conclusion, our results unambiguously suggested that under arsenic stress, zinc can partly relieve intestinal inflammation and disruption of tight junction segment-dependently.


Assuntos
Arsênio/efeitos adversos , Carpas , Enterotoxinas/efeitos adversos , Doenças dos Peixes/prevenção & controle , Intestinos/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Zinco/farmacologia , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Doenças dos Peixes/induzido quimicamente , Inflamação/induzido quimicamente , Inflamação/prevenção & controle , Inflamação/veterinária , Intestinos/fisiologia , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/fisiologia
5.
Ecotoxicol Environ Saf ; 179: 167-174, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31039459

RESUMO

BACKGROUND: Sub-chronic arsenic (arsenite) exposure-induced oxidative toxicity leads to adverse effects in various organ systems, especially the kidney. Copper sulphate (Cu2+), known for its extensive uses in agriculture, has also been reported to have pro-oxidation properties. Both of these two potential toxic elements can bio-accumulate through food chain, thus endangering human health. However, their interaction study in the kidney is scanty. AIM: To investigate the synergism effects of Cu2+ in arseniasis-elicited oxidative stress and cascaded renal injury in chickens. RESULTS: Arsenite intoxication decreased renal antioxidant system along with ATPases. Arsenite exposure also significantly elicited disequilibrium of mitochondrial homeostasis, accompanying by elevated apoptotic and autophagic cell death. The disturbed morphological and ultrastructural changes further corroborated arsenite nephrotoxicity. These anomalies aligned with the findings in Cu2+ groups, which co-administrated with arsenic further deteriorated these pathological changes. This synergism was achieved partially via the inactivation of phosphoinositide-3-kinase/protein kinase b/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway through the activation of P53. CONCLUSIONS: Copper excess and arsenic exposure can function independently or cooperatively to affect oxidative stress, mitochondrial dynamics and programmed cell death. These results highlighted the need to take precautions against copper and arsenic co-exposure when considering their impact in susceptible animals/populations.


Assuntos
Apoptose/efeitos dos fármacos , Arsenitos/toxicidade , Galinhas , Sulfato de Cobre/toxicidade , Rim/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Autofagia/efeitos dos fármacos , Biomarcadores/sangue , Galinhas/metabolismo , Sinergismo Farmacológico , Rim/metabolismo , Rim/ultraestrutura , Masculino , Oxirredução , Fosfatidilinositol 3-Quinases/metabolismo
6.
ScientificWorldJournal ; 2014: 209547, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25114956

RESUMO

Hydrology helps determine the character of wetlands; wetlands, in turn, regulate water flow, which influences regional hydrology. To understand these dynamics, we studied the Naoli basin where, from 1954 to 2005, intensive marshland cultivation took place, and the watershed's wetland area declined from 94.4 × 10(4)ha to 17.8 × 10(4)ha. More than 80% of the wetland area loss was due to conversion to farmland, especially from 1976 to 1986. The processes of transforming wetlands to cultivated land in the whole Naoli basin and subbasins can be described using a first order exponential decay model. To quantify the effects of wetlands cultivation, we analyzed daily rainfall and streamflow data measured from 1955 to 2005 at two stations (Baoqing Station and Caizuizi Station). We defined a streamflow regulation index (SRI) and applied a Mann-Kendall-Sneyers test to further analyze the data. As the wetland area decreased, the peak streamflow at the Caizuizi station increased, and less precipitation generated heavier peak flows, as the runoff was faster than before. The SRI from 1959 to 2005 showed an increasing trend; the SRI rate of increase was 0.05/10a, demonstrating that the watershed's regulation of streamflow regulation was declined as the wetlands disappeared.


Assuntos
Hidrologia , Rios , Áreas Alagadas , Geografia , Modelos Teóricos
7.
Heliyon ; 10(4): e25955, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38375249

RESUMO

Majiagou River, a crucial urban river in Harbin, traverses densely populated areas including agricultural, suburban, and main urban areas, presenting highly intricate habitat characteristics. In recent years, urbanization has significantly intensified human interference, fundamentally reshaping the phytoplankton community. Understanding the response mechanism of phytoplankton to environmental factors is of paramount importance as they serve as primary producers in aquatic ecosystems. To investigate this, we established 25 sampling sites to analyze the phytoplankton community and 14 key physicochemical parameters, such as total phosphorus (TP) and total nitrogen (TN). Utilizing hierarchical clustering analysis (HCA) and One-way Analysis of Variance (ANOVA), we identified distinct river segments, revealing spatial distribution differences and environmental factor variations among phytoplankton species across segments. By adopting redundancy analysis (RDA), we pinpointed the primary environmental factors impacting phytoplankton communities and examined the correlation between phytoplankton and these factors to elucidate the driving mechanisms governing phytoplankton dynamics. The outcomes demonstrated that the phytoplankton community in Majiagou River was predominantly composed of Bacillariophyta and Chlorophyta, however, notable disparities in spatial distribution and species composition resulting from human interference were evident. Areas with intense human disturbance were dominated by diatoms and exhibited trends of homogenization and reduced biodiversity. RDA showed that pH, NH4+-N, NH3-N, chemical oxygen demand (COD), and TP were key environmental factors influencing phytoplankton communities. We have confirmed that due to variations in environment conditions and different levels of human disturbance, there will be some differences in the critical limiting factors affecting phytoplankton. Our study offers valuable insights for governing urban rivers during the low-temperature period.

8.
Ecol Evol ; 14(7): e11711, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39026953

RESUMO

Muling River, situated amidst cultivated lands in Heilongjiang Province, northeastern China, has long been subjected to sand-digging activities, resulting in severe damage to its riverbed. However, little research has been conducted on the impact of this disturbance on the status of fish community structure and trophic guilds in this river. In this study, environmental factors, fish community structure, and fish trophic guild biomass distribution patterns from the Muling River basin were investigated among seasons (spring, summer, and autumn) and sections (upper, middle, and lower stream) in 2015 and 2017. During the six sampling times periods, 46 species of five orders and 12 families of fish were classified into seven trophic guilds. Fish species number and biomass were higher upper reaches of the watershed. The insectivores (16.26%), phytoplanktivores (10.09%), benthivores (40.17%), and omnivores (11.86%) were the dominant trophic guilds. We found that fish trophic guilds biomass and environmental factors such as transparency, water depth, pH value, total phosphorus, and chemical oxygen demand were highest in the upper section compared to other sections. Variation partitioning revealed that fish trophic guilds biomass was influenced more by environmental factors (61.2%), followed by section (0.7%) and season (0.1%). Partial RDA ordination showed that fish trophic guilds were positively correlated with water depth and transparency, while negative with turbidity. This study underscores the importance of considering trophic guilds of freshwater fishes to inform management strategies in regions experiencing significant environmental change.

9.
Heliyon ; 10(14): e34334, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39108885

RESUMO

Continuous wetland restoration initiatives in China are increasing, due to the global degradation of wetland ecosystems. However, monitoring of the restoration situation remains incomplete. In this study, we investigated the effects of wetland restoration on the macroinvertebrate taxonomic structure and feeding functional groups (FFGs) in the Naolihe National Nature Reserve (NNNR). Macroinvertebrate taxonomic diversity can be used to monitor wetlands, and we hypothesized that FFGs serve the same function. We calculated the diversity index, performed a non-metric multidimensional analysis based on macroinvertebrate taxonomics and FFGs, and subsequently, performed a t-test on the results. The results showed that macroinvertebrate diversity and FFGs analyses were in general agreement with taxonomic diversity, indicating that the macroinvertebrate community in the wetland with five years of fallow land was resembled that of the natural wetland. In contrast, the macroinvertebrate community in the wetland with two years of fallow differed significantly from that in the natural wetland. Additionally, the results of the ecosystem attributes based on biomass and FFGs showed that restored wetlands exhibited lower habitat stability than natural wetlands. Nutrients (NH4 +-N, NO3 --N, and total phosphorus) explained the changes in macroinvertebrate FFGs in the restored wetlands to a greater extent than in the natural wetlands. The results of this study highlight the importance of macroinvertebrate FFGs in wetland monitoring, which supports the use of macroinvertebrate FFGs in the NNNR to monitor wetland restoration.

10.
Environ Manage ; 52(5): 1149-60, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24036599

RESUMO

Measurements of methane flux at a few inundated sites in China have been extrapolated to obtain estimates on a national scale. To enable those national estimates to be refined and to compare flux from geographically separated sites comprising the same wetland types, we used a closed chamber method to measure methane flux in uninundated Betula platyphylla-and Larix gmelinii-dominated peatlands in the Northeast China. Our measurements were taken from both vegetated and bare soil surfaces, and we compared flux with environmental measures including vegetation biomass, soil temperature and soil characteristics. We found that methane flux was low, and that there were no significant differences between wetland types, indicating that environmental influences were dominant. We found that flux was positively correlated to temperature in the surface layers of the soil, the above-ground biomass of the shrub and herb layers, total soil carbon and total soil nitrogen; and we suggest that emissions may be due to anaerobic microcosms in the surface layers. The methane production potentials of the soils were low and similar between both sites but inconsistent with the differences between fluxes, and inconsistent with production potentials and fluxes reported from the same wetland types elsewhere, indicating that there were subtle environmental differences between wetlands classed as being of the same type. Differences between fluxes in vegetated chambers with bare soil chambers were insignificant, indicating that no methane emission through aerenchyma occurred at our sites. We concluded that wetland type was not an accurate predictor of methane flux.


Assuntos
Metano/metabolismo , Árvores/metabolismo , Áreas Alagadas , Betula , Biomassa , Carbono/análise , China , Geografia , Larix , Modelos Lineares , Nitrogênio/análise , Solo/química , Temperatura
11.
Plants (Basel) ; 11(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36365276

RESUMO

Plants regulate greenhouse gas (GHG) fluxes in wetland ecosystems, but the mechanisms of plant removal and plant species that contribute to GHG emissions remain unclear. In this study, the fluxes of carbon dioxide (CO2) and nitrous oxide (N2O) were measured using the static chamber method from an island forest dominated by two different species, namely Betula platyphylla (BP) and Larix gmelinii (LG), in a marsh wetland in the Great Xing'an Mountains. Four sub-plots were established in this study: (1) bare soil after removing vegetation under BP (SBP); (2) bare soil after removing vegetation under LG (SLG); (3) soil with vegetation under BP (VSBP); and (4) soil with vegetation under LG (VSLG). Additionally, the contributions of the dark respiration from plant aerial parts under BP (VBP) and LG (VLG) to GHG fluxes were calculated. We found that the substantial spatial variability of CO2 fluxes ranged from −25.32 ± 15.45 to 187.20 ± 74.76 mg m−2 h−1 during the study period. The CO2 fluxes decreased in the order of SBP > VSLG > VSBP > SLG > VLG > VBP, indicating that vegetation species had a great impact on CO2 emissions. Particularly, the absence of vegetation promoted CO2 emission in both BP and LG. Additionally, CO2 fluxes showed dramatically seasonal variations, with high CO2 fluxes in late spring (May) and summer (June, July, and August), but low fluxes in late summer (August) and early autumn (September). Soil temperatures at 0−20 cm depth were better predictors of CO2 fluxes than deeper soil temperatures. N2O fluxes were varied in different treatments with the highest N2O fluxes in SLG and the lowest N2O fluxes in VBP. Meanwhile, no significant correlation was found between N2O fluxes and air or soil temperatures. Temporally, negative N2O fluxes were observed from June to October, indicating that soil N2O fluxes were reduced and emitted as N2, which was the terminal step of the microbial denitrification process. Most of the study sites were CO2 sources during the warm season and CO2 sinks in the cold season. Thus, soil temperature plays an important role in CO2 fluxes. We also found that the CO2 flux was positively related to pH in a 10 cm soil layer and positively related to moisture content (MC) in a 50 cm soil layer in VSBP and VSLG. However, the CO2 flux was negatively related to pH in a 30 cm soil layer in SBP and SLG. Our findings highlight the effects of vegetation removal on GHG fluxes, and aid in the scientific management of wetland plants.

12.
Mitochondrial DNA B Resour ; 7(1): 62-63, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34926825

RESUMO

We determined the whole mtDNA genome of the Common Pochard (Aythya ferina) in the Ningxia Hui Autonomous Region, China. The complete mitochondrial genome is 16,599 bp in length and consists of 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 1 control region (D-loop). The nucleotide composition is 29.34% A, 22.23% T, 15.66% G, and 32.77% C. Phylogenetic analysis results showed close genetic relationship between A. ferina and Aythya americana.

13.
Artigo em Inglês | MEDLINE | ID: mdl-36429711

RESUMO

Phytoplankton, as the primary producer of the wetland water ecosystem's food chain, are very sensitive to environmental changes. In order to explore the significance of phytoplankton in protecting ecosystem integrity, the wetland ecosystem in Zhalong wetland, one of the most important international wetlands, was selected as the research area. For the study, 81 sampling sites were set up in the whole wetland, and phytoplankton samples and water quality environmental factors were measured in spring, summer, and autumn of 2019. The phytoplankton community structure and water environmental factors were evaluated by canonical correspondence analysis (CCA). The main research findings are as follows: a total of 292 species and variants of phytoplankton belonging to 8 phyla and 110 genera were identified within Zhalong wetland in spring, summer, and autumn 2019. The total phytoplankton abundance and biomass in summer were higher than in spring and autumn, and Cyclotella meneghiniana was the most dominant species in three seasons and three areas. The results of random forest are generally consistent with the results of CCA in spring, when the main environmental factors affecting phytoplankton were NTU and WT; the result in summer and autumn agreed with those of CCA, which awaits further study. In addition, the phytoplankton is mainly affected by WT, depth, and DO in the lake area, TP, DO, and NTU in the river area, and WT in the wetland area.


Assuntos
Diatomáceas , Fitoplâncton , Áreas Alagadas , Ecossistema , Qualidade da Água
14.
Sci Rep ; 11(1): 18265, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521949

RESUMO

Yaks are typical plateau-adapted animals, however the microvascular changes and characteristics in their lungs after birth are still unclear. Pulmonary microvasculature characteristics and changes across age groups were analysed using morphological observation and molecular biology detection in yaks aged 1, 30 and 180 days old in addition to adults. Results: Our experiments demonstrated that yaks have fully developed pulmonary alveolar at birth but that interalveolar thickness increased with age. Immunofluorescence observations showed that microvessel density within the interalveolar septum in the yak gradually increased with age. In addition, transmission electron microscopy (TEM) results showed that the blood-air barrier of 1-day old and 30-days old yaks was significantly thicker than that observed at 180-days old and in adults (P < 0.05), which was caused by the thinning of the membrane of alveolar epithelial cells. Furthermore, Vegfa and Epas1 expression levels in 30-day old yaks were the highest in comparison to the other age groups (P < 0.05), whilst levels in adult yaks were the lowest (P < 0.05). The gradual increase in lung microvessel density can effectively satisfy the oxygen requirements of ageing yaks. In addition, these results suggest that the key period of yak lung development is from 30 to 180 days.


Assuntos
Bovinos/anatomia & histologia , Pulmão/irrigação sanguínea , Animais , Animais Recém-Nascidos/anatomia & histologia , Animais Recém-Nascidos/crescimento & desenvolvimento , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Western Blotting , Bovinos/crescimento & desenvolvimento , Pulmão/anatomia & histologia , Pulmão/crescimento & desenvolvimento , Pulmão/ultraestrutura , Microcirculação , Microscopia Eletrônica de Transmissão , Densidade Microvascular , Microvasos/anatomia & histologia , Microvasos/ultraestrutura , Alvéolos Pulmonares/anatomia & histologia , Alvéolos Pulmonares/irrigação sanguínea , Alvéolos Pulmonares/ultraestrutura , Reação em Cadeia da Polimerase em Tempo Real , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Mitochondrial DNA B Resour ; 6(2): 546-547, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33628922

RESUMO

The Ferruginous Duck (Aythya nyroca) is a diving duck that is widely distributed in Asia, Africa, and Europe. We determined the complete mitogenome of the Ferruginous Duck gathered at Ningxia, China. The total length of the complete mitochondrial genome is 16,623 bp and it consists of 13 protein-coding, 22 tRNA, 2 rRNA genes, and 1 control region (CR). Only one overlap among the 13 protein-coding genes was found: ND4L/ND4. The CR is 1068 bp in length. The nucleotide composition is 29.66% A, 22.28% T, 15.35% G, 32.71% C. The result of phylogenetic analysis showed that there is close genetic relationship among Aythya nyroca and three ducks in the Genus Aythya.

16.
Sci Total Environ ; 762: 143054, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33127128

RESUMO

In water environment, the interaction between environmental pollutants is very complex, among which pesticides and antibiotics are dominant. However, most studies only focus on individual toxic effects, rather combined. In this study, the sub-chronic exposure effect of cypermethrin (CMN, 0.65 µg/L), sulfamethoxazole (SMZ, 0.30 µg/L) and their mixture on grass crap (Ctenopharyngodon idellus) was investigated. The brain tight junction, oxidative stress and apoptosis-related indices were determined after 42 days of exposure. In terms of brain function, acetyl cholinesterase (AChE) activity was significantly inhibited by CMN, SMZ and their mixtures during exposure periods. Obvious histological damage from cellular and subcellular levels were also observed, which were further confirmed by a decrease in tight junction protein levels. Malondialdehyde (MDA) and 8-hydroxy-2-deoxyguanosine (8-OHdG) contents were significantly increased by individual compounds and mixtures, in which the content of glutathione (GSH) displayed the opposite trend. In mechanism, nuclear factor (erythrocyte derived 2) like 2(Nrf2) pathway was activated, which may trigger cellular protection to cope with CMN and SMZ exposure. However, apoptosis was also detected from the level of mRNA and histochemistry. In general, these two exogenous induced similar biological responses. The neurotoxicity of CMN was strengthened by SMZ with regard to these indices in most cases and vice versa. This study will reveal the potential co-ecological risks of pesticide and antibiotic in the aquatic organism, and provide basic data for their safety and risk assessment.


Assuntos
Carpas , Ração Animal/análise , Animais , Apoptose , Barreira Hematoencefálica , Carpas/metabolismo , Dieta , Proteínas de Peixes/metabolismo , Estresse Oxidativo , Piretrinas , Sulfametoxazol
17.
Mitochondrial DNA B Resour ; 6(2): 701-702, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33763555

RESUMO

We determined the whole mtDNA genome of the gray-headed lapwing (Vanellus cinereus) in Ningxia Hui Autonomous Region, China. The complete mitochondrial genome is 17,078 bp in length and consists of 13 protein-coding genes (PCGs), 22 tRNA genes, 2 rRNA genes, and 1 control region (D-loop). The nucleotide composition is 31.65% A, 23.50% T, 13.76% G, and 31.09% C. The result of phylogenetic analysis showed that there was close genetic relationship between V. cinereus and V. vanellus.

18.
Food Funct ; 11(10): 8547-8559, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33026005

RESUMO

Antibiotics are used worldwide to treat diseases in humans and other animals; most of them and their secondary metabolites are discharged into the aquatic environment, posing a serious threat to human health. However, the toxicity of antibiotics on aquatic organisms, especially the effects on the detoxification system and immune system, has not been thoroughly studied. Lycopene (LYC) is a naturally occurring hydrocarbon carotenoid, which has received extensive attention as a potential antioxidant. The aim of this study was to investigate whether LYC alleviates exogenous toxicity in carp induced by sulfamethoxazole (SMZ) and the underlying molecular mechanisms. The grass carp were treated with SMZ (0.3 µg L-1) and/or LYC (10 mg per kg body weight) for 30 days. Indexes, such as hepatic function-related including histopathological changes and biochemical parameters, detoxification system-related including the cytochrome P450 enzyme system and antioxidant system, and immune system-related including inflammatory and apoptosis processes were detected. The results showed that SMZ stress leads to significant pathological damage of the liver and induction of oxidative stress. LYC coadministration recovered the cytochrome p450-1A1 homeostasis and decreased SMZ-induced accumulation of intracellular reactive oxygen species (ROS). Mechanistically, indicators in the innate immune system (such as toll like receptors (TLRs), tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß, IL-6 and IL-8) and the apoptosis pathway (p53, PUMA, B-cell lymphoma-2 (Bcl-2), BCL2-associated X (Bax), and Caspase-9/3) disclosed adaptive activation under SMZ exposure; these anomalies returned to normal or close-to-normal levels after LYC coadministration. Therefore, LYC dietary supplement possesses liver protective function against exogenous toxic compounds like SMZ, making LYC a functional aquatic feed ingredient for aquiculture.


Assuntos
Antioxidantes/farmacologia , Carpas , Fígado/efeitos dos fármacos , Licopeno/farmacologia , Sulfametoxazol/toxicidade , Animais , Apoptose/efeitos dos fármacos , Carpas/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Citocinas/genética , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Fígado/metabolismo , Fígado/patologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , Mapas de Interação de Proteínas , Espécies Reativas de Oxigênio/metabolismo , Receptores Toll-Like/metabolismo
19.
Environ Pollut ; 266(Pt 3): 115156, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32663629

RESUMO

The aquatic ecosystem is seriously damaged because of the heavy use of pesticides and antibiotics. Fish is the indispensable link between environmental pollution and human health. However, the toxic effects of environment-related concentrations of pesticides and antibiotics in fish have not been thoroughly studied. In this study, grass carps exposed to cypermethrin (CMN, 0.651 µg/L) or/and sulfamethoxazole (SMZ, 0.3 µg/L) for 42 days caused oxidative stress, apoptosis and immunodeficiency in the spleen of grass carps. CMN or/and SMZ exposure led to oxidative damage (consumption of antioxidant enzymes (superoxide dismutase and catalase)) and lipid peroxidation (accumulation of malondialdehyde), induced apoptosis (increases in TUNEL index, Bax/bcl-2, p53, puma and Caspase family expression). In addition, the levels of immunoglobulin M (IgM), complement 3 (C3) were significantly decreased in all treatment groups, which trend was also found in C-reactive protein in CMN and MIX group, and lysozyme in MIX group. Transcription of almost all genes involved in the Toll-like receptors (TLR) signaling pathway was up-regulated under CMN or/and SMZ exposure. However, when subsequently attacked by Aeromonas hydrophila for 2 days, the TLR pathway was inhibited in spleens of all treatment groups accompanied by higher mortality. Overall, the environmentally relevant concentration of CMN and SMZ damages the immune system, triggering oxidative stress and apoptosis in carps. And by affecting the conduction of TLR signaling pathway, CMN or/and SMZ exposure inhibits the innate immune response of fish and reducing their disease resistance. This study highlights the importance of rational and regulated use of these pesticides and antibiotics.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Ursidae , Aeromonas hydrophila , Ração Animal/análise , Animais , Dieta , Ecossistema , Proteínas de Peixes , Imunidade Inata , Piretrinas , Sulfametoxazol
20.
Vet Res Commun ; 33(4): 355-65, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19031108

RESUMO

Yak is a unique domestic animal of Qinghai-Tibetan Plateau. Its unique adaptability to the high altitude environment has been hypothesized due to special pulmonary microvasculature. However, the anatomical evidence is still less. The present study characterized the subpleural pulmonary microvascular architecture of newborn yak by vascular corrosion cast and the scanning electron microscopy. The results showed the dense vascular network occurred in subpleural area in newborn yak. Subpleural vascular network was found in most of observed areas, while the sparse vascular network crept onto the subpleural network in some fields of view. The subpleural microvessels and their branches made up of the subpleural microvascular network. According to the branching sequence of vessels, the subpleural arterioles could be divided into four grades: the arteriole, terminal arteriole, precapillary arteriole and capillary. The subpleural capillary network in the local area could be classified into three different forms, including sheetlike vascular network, wrinkled vascular network and weblike vascular network. It was the specific characteristics on the cast surface of the microvessels that was the adaptable peculiarities. Anastomoses were found between the pleural microvessels and the interlobular capillaries, or between the pleural microvessels and the subpleural capillaries, or between the interlobular capillaries and the subpleural capillaries. Therefore, there was significant difference on the subpleural pulmonary microvasculature between newborn yak and other adult mammals.


Assuntos
Bovinos/anatomia & histologia , Pulmão/irrigação sanguínea , Animais , Animais Recém-Nascidos , Feminino , Masculino , Microscopia Eletrônica de Varredura/veterinária , Microvasos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA