Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 735: 150678, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39270555

RESUMO

Insufficient residual liver tissue after partial hepatectomy (PH) may lead to serious complications such as hepatic failure and small-for-size syndrome. Salidroside (SAL) is obtained from Rhodiola rosea through modernized separation and extraction and has been validated for treating various liver diseases. It's yet unknown, nevertheless, how SAL affects liver regeneration after PH. This study aimed to determine whether SAL could promote liver regeneration after PH in mice. We demonstrated that SAL could attenuate liver injury after PH and promote hepatocyte proliferation and liver mass recovery. Mechanistically, SAL inhibited the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome, attenuating pyroptosis. RNA-seq analysis indicated that SAL downregulated the transcription of NLRP3 and GSDMD genes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the NOD-like receptor signaling pathway was significantly enriched in down-regulated signaling pathways. Notably, SAL in combination with the NLRP3 inhibitor MCC950 did not further inhibit NLRP3 inflammasome and promote liver mass recovery. In summary, our findings proved that SAL could be a potential agent for improving liver function and promoting liver regeneration after PH.

2.
Sci Rep ; 14(1): 22674, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39349576

RESUMO

Thorough investigation into the laws governing frozen rock damage in high-altitude and cold regions can offer valuable insights for advancing infrastructure construction, ecological environment protection, and sustainable development on the Qinghai-Xizang Plateau. This study combined with the seasonal variation patterns of frozen rocks in the Qinghai-Xizang Plateau, and processed the rock samples using a freeze-thaw interval of -20 °C~20 °C. Uniaxial compression test was conducted based on the MTS816 rock mechanics testing system. The porosity changes of rock samples with different freeze-thaw cycles were analyzed using the MesoMR12-060 H-I nuclear magnetic response analysis system. A rock freeze-thaw load coupled damage constitutive model was derived using the Lemaitre equivalent strain theory. Research has shown that during the freezing process, the pore water inside the rock sample is affected by the phase change of water-ice, resulting in frost heave force, which further promotes the expansion of the pore walls and the initiation of new cracks. When melted, pore water migrates towards newly formed micropores, thereby affecting the changes in the pores of rock samples. The increase in porosity at the micro level weakens the mechanical parameters of rocks at the macro level. The segmented freeze-thaw damage constitutive model based on Lemaitre equivalent strain theory can well fit the experimental results involved in this study, as well as the experimental results obtained by other researchers. The compaction stage can partially reflect the changes in sandstone pore structure under freeze-thaw cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA