RESUMO
The present study attempts to explore the direct recyclability of glyceroborate from medicine pharmaceutical production wastewater into an aqueous lubricant instead of conventional waste processing methods from the tribological view. In order to determine the tribological feasibility, the physicochemical properties of crude pharmaceutical wastewater are investigated and compared with those of pure glycerol to access their potential lubrication properties. The results demonstrated that the crude pharmaceutical wastewater has better friction-reducing and antiwear properties under the same working conditions. Besides outstanding lubricating properties, the friction-induced formation of borate tribo-film and intermediate FeOOH compound favors lowering of the shear stress between the rubbing surfaces. This finding better provides an alternative to transform glyceroborate from medicine pharmaceutical production wastewater after simple distillation processing to a potential aqueous lubricant.
RESUMO
In transition metal dichalcogenides (TMDs), Ising superconductivity with an antisymmetric spin texture on the Fermi surface has attracted wide interest due to the exotic pairing and topological properties. However, it is not clear whether the Q valley with a giant spin splitting is involved in the superconductivity of heavily doped semiconducting 2H-TMDs. Here by taking advantage of a high-quality monolayer WS2 on hexagonal boron nitride flakes, we report an ionic-gating induced superconducting dome with a record high critical temperature of â¼6 K, accompanied by an emergent nonlinear Hall effect. The nonlinearity indicates the development of an additional high-mobility channel, which (corroborated by first principle calculations) can be ascribed to the population of Q valleys. Thus, multivalley population at K and Q is suggested to be a prerequisite for developing superconductivity. The involvement of Q valleys also provides insights to the spin textured Fermi surface of Ising superconductivity in the large family of transition metal dichalcogenides.
RESUMO
Porcine epidemic diarrhea virus (PEDV) is an enteric pathogen belonging to the family Coronaviridae that causes the porcine epidemic diarrhea, a highly contagious disease with high mortality in piglets and symptoms that include dehydration and severe diarrhea. Considering the high frequency of genetic mutations in PEDV and its potential for interspecies transmission, as it can infect and replicate in bat and human cells, a comprehensive analysis of its codon usage bias was performed. The effective number of codons (ENC) and the relative synonymous codon usage (RSCU) were determined, revealing codon usage bias in the PEDV genome. Principal component analysis (PCA), an ENC plot, and a parity rule 2 (PR2) plot showed that mutation pressure and natural selection have influenced the codon usage bias of the PEDV genomes. Correlation analysis with GRAVY and aromaticity values and neutrality plot analysis indicated that natural selection was the main force influencing the codon usage pattern, while mutation pressure played a minor role. This study provides valuable basic data for further fundamental research on evolution of PEDV.
Assuntos
Uso do Códon/genética , Códon/genética , Vírus da Diarreia Epidêmica Suína/genética , Animais , Evolução Molecular , Genoma Viral/genética , Mutação/genética , Análise de Componente Principal/métodos , Seleção Genética/genética , SuínosRESUMO
Atypical porcine pestivirus (APPV) is an emerging novel pestivirus causing the congenital tremor (CT) in piglets. The worldwide distribution characteristic of APPV make it a threat to global swine health. E2 is the major envelope glycoprotein of APPV and the crucial target for vaccine development. Considering the genetic variability of APPV complete genomes and its E2 gene as well as gaps for codon analysis, a comprehensive analysis of codon usage patterns was performed. Relative synonymous codon usage (RSCU) and effective number of codon (ENC) analyses showed that a relatively instable change existed and a slight low codon usage bias (CUB) were displayed in APPV genomes. ENC-plot analysis and correlation analyses of nucleotide compositions and ENC showed that mutation pressure and natural selection both affected the codon usage bias of the APPV and natural selection had a more obvious influence for E2 gene compared with complete genomes. Principal component analysis (PCA) and correlation analyses confirmed the above results. Correlation analyses between Gravy and Aromaticity values and the codon bias showed that natural selection played an important role in shaping the synonymous codon bias. Furthermore, neutrality plot analysis showed that natural selection was the main force while mutation pressure was a minor force influencing the codon usage pattern of the APPV E2 gene and complete genomes. The results could illustrate the codon usage patterns of APPV genomes and provided valuable basic data for further fundamental research of evolution of APPV.
Assuntos
Uso do Códon , Genoma Viral , Pestivirus/genética , Suínos/virologia , Animais , MutaçãoRESUMO
Seneca Valley virus (SVV) is an emerging global picornavirus that causes porcine idiopathic vesicular disease. We characterized the genome and conducted evolutionary and recombination analyses of four newly identified SVV strains which were CH-GDZS-2019, CH-GDMZ-2019, CH-GDHZ01-2019, and CH-GDHZ02-2019. Sequence alignment and phylogenetic analysis showed that strains circulating in swine herds in China were genetically diverse and complex. Recombination analyses indicated that strain CH-GDZS-2019 was derived from strains USA-IA44662-2015-P1 and USA-GBI29-2015, which were both isolated in the USA in 2015, while CH-GDMZ-2019 was derived from the Chinese field strains 1-2018-BH-China and CH-GDQC-2017. Our results provided important insights into the molecular characterization of the SVV strains co-circulating in Guangdong Province in China in 2019 and demonstrated the importance of additional SVV surveillance in China.
Assuntos
Infecções por Picornaviridae , Picornaviridae , Doenças dos Suínos , Animais , China/epidemiologia , Variação Genética , Genoma Viral , Filogenia , Picornaviridae/genética , Picornaviridae/isolamento & purificação , Infecções por Picornaviridae/epidemiologia , Infecções por Picornaviridae/veterinária , Infecções por Picornaviridae/virologia , RNA Viral/genética , Recombinação Genética , Suínos/virologia , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/virologiaRESUMO
Famous traditional formula Sanpian Decoction(SPD)comes from Dialectical Records of Chen Shiduo of the Qing Dynasty,and ranks among 100 classic prescriptions of Classic Famous Traditional Formula catalogue(the First Batch). SPD was prepared according to Management Standards for Traditional Chinese Medicine Decoction Room in Medical Institutions. According to the polarity of different components in SPD,two HPLC fingerprints were established, in which six herbs, namely Chuanxiong Rhizoma, Paeoniae Randix Alba, Sinapis Semen, Glycyrrhizae Radix et Rhizoma, Pruni Semen, Angelicae Dahuricae Radix,are all reflected in the fingerprints; The dry extract rate, transfer rate and similarities of fingerprints were used as indicators to study the relationship between the quality value transmitting of medicinal herbs-decoction pieces-whole decoction of Chuanxiong Rhizoma. Experiment result shows that,the transfer rate of ferulic acid from medicinal herbs to decoction pieces is between 72.00% and 108.36%; the transfer rate of ferulic acid from decoction pieces to SPD is between 31.76% and 64.09%; the dry extract rate of the whole decoction is between 14.69% and 20.16%;The similarity range of fingerprint 1 of 15 batches of SPD is between 0.971 and 0.998, and the similarity range of fingerprint 2 is between 0.980 and 0.996. The established fingerprint has rich information,and the established quality evaluation method is suitable for the quality control of medicinal herbs-decoction pieces-whole decoction of Chuanxiong Rhizoma, which can provide a certain reference for developing the quality control evaluation method for formulated granules, famous formulae and other terminal products derived from traditional Chinese medicine decoction.
Assuntos
Medicamentos de Ervas Chinesas/química , Controle de Qualidade , Cromatografia Líquida de Alta Pressão , Medicina Tradicional Chinesa , RizomaRESUMO
In recent years,the development and application of classical famous prescriptions have attracted much attention. However,the differences between ancient and modern conditions lead to difficulties in carrying out practical work. In this paper,with Houpu Wenzhong Decoction as an example,the key technologies of boiling granularity,water addition,boiling time and sample pretreatment methods were investigated on the basis of sufficient literature research. The experimental results showed that there was no significant difference in the concentration of index components between those with different granularity( 2 mm and 3-5 mm) and different decocting time( 30 min and 60 min),but the extraction rate of index components was relatively high when the granularity of powder was 2 mm and decocting time was 30 min. With the increase of water content,the concentration of index components and the extraction rate were increased in varying degrees. A certain proportion of methanol aqueous solution was used as the resolvent before content determination of the reference sample of Houpu Wenzhong Decoction,which could take into account both the spectral information of water-soluble components and fat-soluble components in the prescription,and help to display the overall information of the prescription' s chemical components more comprehensively. At the same time,the boiling and dispersing classical prescriptions in the Catalogue of Ancient Classical Prescriptions( the first batch) were collected and summarized in this study; the key influencing factors of decocting process were analyzed from different angles,and preliminary research suggestions were put forward,so as to provide a certain direction and reference for the establishment of quality standard of Houpu Wenzhong Decoction,as well as for the development,research and clinical application of boiling and dispersing classical prescriptions.
Assuntos
Medicamentos de Ervas Chinesas/normas , Pós , PrescriçõesRESUMO
Two-dimensional group IVA materials (graphene, silicene, germanene, stanene, and plumbene) are promising candidates for realization of the quantum spin Hall effect and for future device applications. We employ density functional theory, tight-binding models, and a Green's function method to systematically investigate their topological properties. From graphene to plumbene, the strength of spin-orbit coupling and the bulk gap increases with increasing atomic mass, and plumbene, as a normal insulator, is totally different from the other four materials, whose ground states are topological insulators. Through detailed analyses of orbital character weights and the evolution of low-energy states around the Γ point, we explain why plumbene is so different. Our quantum transport calculations also indicate that there exist electronic transport channels along edges within the bulk gap of topological insulators. By investigating the effects of external fields on the electronic structures of silicene, germanene, and stanene, we reveal a rich phase diagram and propose two filters with nearly 100% spin polarization. In addition, we present a theoretical design for a spin twister, based on curved two-dimensional topological insulators.
RESUMO
BACKGROUND: Infection with Goose Reovirus (GRV) can cause serious economic losses in the goose breeding industry. In this study, the GRV allantoic fluid was concentrated and used as an antigen in a formalin-inactivated oil-emulsion vaccine. RESULTS: When 6 day-old geese were inoculated, antibodies against GRV became detectable at 6 days post-vaccination, their concentration peaked at 3 weeks. These antibodies were maintained for longer than 2 weeks. As the most susceptible age for GRV infection is birds under 2 weeks of age this vaccine should provide adequate cover for the most at risk birds. When geese were exposed to reovirus at different time intervals after immunization, the data revealed that the vaccine can provide a protection rate of 80%. The developed vaccine has good stability and could be stored at 4 °C for at least 12 months. CONCLUSION: These results indicate that the developed GRV vaccine is safe, effectively absorbed, efficacious in inducing a rapid immune response, and effective in controlling GRV infection. Our results should be useful for the application of vaccines for controlling GRV in different goose flocks.
Assuntos
Gansos , Doenças das Aves Domésticas/virologia , Infecções por Reoviridae/veterinária , Vacinas Virais/imunologia , Animais , Embrião de Galinha/virologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/prevenção & controle , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/prevenção & controle , Vacinação/veterinária , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Vacinas Virais/administração & dosagemRESUMO
Swine flu caused by swine influenza A virus (swIAV) is an acute respiratory viral disease that is spreading in swine herds worldwide. Although the effect of some host factors on replication of swIAV has been identified, the role of CD46 in this process is unclear. Here, we report that CD46 inhibits the replication of swIAV by promoting the production of type I interferons (IFNs) in porcine kidney (PK-15) cells. CD46 knockout (CD46-KO) and stably expressing (CD46-overexpression) PK-15 cells were prepared using lentivirus-mediated CRISPR/Cas9 gene editing and seamless cloning technology. The results of virus infection in CD46-overexpression PK-15 cells showed that the replication of H1N1 and H3N2 swIAVs were inhibited, and the production of type I IFNs (IFN-α, IFN-ß), interferon regulatory factor (IRF) 3, and mitochondrial antiviral-signaling protein (MAVS) was enhanced. Virus infection in CD46-KO PK-15 cells showed the opposite results. Further results showed that CD46-KO PK-15 cells have a favorable ability to proliferate influenza viruses compared to Madin-Darby canine kidney (MDCK) and PK-15 cells. These findings indicate that CD46 acts as promising target regulating the replication of swIAV, and help to develop new agents against infection and replication of the virus.
Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Interferon Tipo I , Doenças dos Suínos , Viroses , Animais , Cães , Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A Subtipo H3N2 , Interferon Tipo I/genética , Suínos , Viroses/veterinária , Replicação Viral/genéticaRESUMO
The photovoltaic effect lies at the heart of eco-friendly energy harvesting. However, the conversion efficiency of traditional photovoltaic effect utilizing the built-in electric effect in p-n junctions is restricted by the Shockley-Queisser limit. Alternatively, intrinsic/bulk photovoltaic effect (IPVE/BPVE), a second-order nonlinear optoelectronic effect arising from the broken inversion symmetry of crystalline structure, can overcome this theoretical limit. Here, we uncover giant and robust IPVE in one-dimensional (1D) van der Waals (vdW) grain boundaries (GBs) in a layered semiconductor, ReS2. The IPVE-induced photocurrent densities in vdW GBs are among the highest reported values compared with all kinds of material platforms. Furthermore, the IPVE-induced photocurrent is gate-tunable with a polarization-independent component along the GBs, which is preferred for energy harvesting. The observed IPVE in vdW GBs demonstrates a promising mechanism for emerging optoelectronics applications.
RESUMO
Electrons and holes, fundamental charge carriers in semiconductors, dominate optical transitions and detection processes. Twisted van der Waals (vdW) heterostructures offer an effective approach to manipulate radiation, separation, and collection processes of electron-hole pairs by creating an atomically sharp interface. Here, we demonstrate that twisted interfaces in vdW layered black phosphorus (BP), an infrared semiconductor with highly anisotropic crystalline structure and properties, can significantly alter both recombination and separation processes of electron-hole pairs. On the one hand, the twisted interface breaks the symmetry of optical transition states resulting in infrared light emission of originally symmetry-forbidden optical states along the zigzag direction. On the other hand, spontaneous electronic polarization/bulk photovoltaic effect is generated at the twisted interface enabling effective separation of electron-hole pairs without external voltage bias. This is supported by first-principles calculations and repeated experiments at various twisted angles from 0 to 90°. Importantly, these phenomena can be observed in twisted heterostructures with thickness beyond two-dimensional. Our results suggest that the engineering of vdW twisted interfaces is an effective strategy for manipulating the optoelectronic properties of materials and constructing functional devices.
RESUMO
CaAFe4As4 with A = K, Rb, and Cs are close to the doped 122 system, and the parent material can reach a superconducting transition temperature of 31-36 K without doping. To study the role of alkali metals, we investigated the induced hole doping and chemical pressure effects as a result of the introduction of alkali metals using density-functional-based methods. These two effects can affect the superconducting transition temperature by changing the number of electrons and the structure of the FeAs conductive layer, respectively. Our study shows that the dxz and dyz orbitals, which are degenerate in CaFe2As2, become nondegenerate in CaAFe4As4 due to two nonequivalent arsenic atoms (As1 and As2). The unusual oblate ellipsoid hole pocket at Γ point in CaAFe4As4 results from a divalent cation Ca2+ replaced by a monovalent cation A+. It shows one of the main differences in fermiology compared to a particular form of CaFe2As2 with reduced 1144 symmetry, due to the enhancement of As2-Fe hybridization. The unusual band appears in CaFe2As2 (1144) and gradually disappears in the change of K to Cs. Further analysis shows that this band is contributed by As1 and has strong dispersion perpendicular to the FeAs layer, suggesting that it is related to the peculiar van Hove singularity below the Fermi level. In addition, various aspects of CaFe2As2 (1144) and CaAFe4As4 in the ground state are discussed in terms of the influence of hole doping and chemical pressure.
RESUMO
The Mn-Bi-Te family displaying magnetism and non-trivial topological properties has received extensive attention. Here, we predict that the antiferromagnetic structure of Mn3Bi2Te6with three MnTe layers is energetically stable and the magnetic energy difference of Mn-Mn is enhanced four times compared with that in the single MnTe layer of MnBi2Te4. The predicted Néel transition point is raised to 102.5 K, surpassing the temperature of liquid nitrogen. The topological properties show that with the variation of the MnTe layer from a single layer to three layers, the system transforms from a non-trivial topological phase to a trivial topological phase. Interestingly, the ferromagnetic state of Mn3Bi2Te6is a topological semimetal and it exhibits a topological transition from trivial to non-trivial induced by the magnetic transition. Our results enrich the Mn-Bi-Te family system, offer a new platform for studying topological phase transitions, and pave a new way to improve the working temperature of magnetically topological devices.
RESUMO
Introduction: Chemotherapeutic drugs are often ineffective due to the delivery. Local chemotherapy, which has high drug concentration, low systemic toxicity, and long duration, has shown excellent potential. Cationic antimicrobial peptides have been proved to enhance the tumor cells' uptake of chemotherapeutic drugs through the membrane-breaking effect. In this study, we designed and developed a thermosensitive gel co-loaded with Dermaseptin-PP and paclitaxel liposomes to increase local chemotherapy. Methods: The paclitaxel liposomes were prepared. Then, it was co-loaded with Dermaseptin-PP in a poloxamer-based thermosensitive gel to obtain Dermaseptin-PP/paclitaxel liposomes gel. The thermosensitivity of gels was investigated by test tube inversion method. The rheology was tested by rheometer. The in vitro cytotoxicity and the permeation in tumor of gels were examined by H157 cells and the 3D cell model, respectively. The retention in tumor and antitumor activity of gels were evaluated by H157 tumor-bearing nude mice. Results: The particle size of paclitaxel liposomes was 148.97 ± 0.21 nm. The encapsulation rate was 86.1%, and the drug loading capacity was 19.4%. The gels had slow-release and temperature-sensitive properties. The porous 3D network structure of the gels could ensure that the drug was fixed into the tumor. In vitro and in vivo distribution studies showed that Dermaseptin-PP promoted the permeation of the gels in H157 multicellular tumor spheres and achieved longer retention in tumor. In vitro and in vivo antitumor studies demonstrated that Dermaseptin-PP/paclitaxel liposomes gel significantly inhibited the growth of tumors for local chemotherapy with good biosafety. Conclusion: This study provided a promising nanomedicine platform for combining antimicrobial peptides and chemotherapeutic drugs for local chemotherapy.
Assuntos
Lipossomos , Neoplasias , Animais , Camundongos , Lipossomos/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Camundongos Nus , Paclitaxel/uso terapêutico , Neoplasias/tratamento farmacológico , Hidrogéis/uso terapêutico , Linhagem Celular TumoralRESUMO
Bulk photovoltaic effect (BPVE), a second-order nonlinear optical effect governed by the quantum geometric properties of materials, offers a promising approach to overcome the Shockley-Quiesser limit of traditional photovoltaic effect and further improve the efficiency of energy harvesting. Here, we propose an effective platform, the nano edges embedded in assembled van der Waals (vdW) homo- or hetero-structures with strong symmetry breaking, low dimensionality and abundant species, for BPVE investigations. The BPVE-induced photocurrents strongly depend on the orientation of edge-embedded structures and polarization of incident light. Reversed photocurrent polarity can be observed at left and right edge-embedded structures. Our work not only visualizes the unique optoelectronic effect in vdW nano edges, but also provides an effective strategy for achieving BPVE in engineered vdW structures.
RESUMO
Materials with interactions between the topology and magnetism are triggering increasing interest. We constructed a two-dimensional (2D) van der Waals heterostructure germanene/Mn2S2, where the germanene is a quantum spin Hall insulator and Mn2S2provides antiferromagnetic (AFM) interactions. In this structure, a 2D AFM nodal-line semimetal (NLSM) phase is expected without the spin-orbit coupling (SOC), which is of a high density of states around the Fermi level. The band touching rings originate from the intersection between different spin components ofporbitals of germanene. This result provides a possible 2D realization of NLSMs, which are usually realized in three-dimensional systems. When the SOC is present, a quantum anomalous Hall (QAH) state emerges with the annihilation of the band-touching rings. The nontrivial topology is determined by calculating the Chern number and Wannier charge centers. This provides an alternative platform to realize QAH states. These results could also provide the possibility of further understanding the topological states in NLSM and electronic applications.
RESUMO
Tumor metastasis and recurrence are recognized to be the main causes of failure in cancer treatment. To address these issues, an "all in one" and "one for all" nanoplatform was established for combined "chemo-immuno-photothermal" therapy with the expectation to improve the antitumor efficacy. Herein, Docetaxel (DTX, a chemo-agent) and cynomorium songaricum polysaccharide (CSP, an immunomodulator) were loaded into zein nanoparticles coated by a green tea polyphenols/iron coordination complex (GTP/FeIII, a photothermal agent). From the result, the obtained nanoplatform denoted as DTX-loaded Zein/CSP-GTP/FeIII NPs was spherical in morphology with an average particle size of 274 nm, and achieved pH-responsive drug release. Moreover, the nanoplatform exhibited excellent photothermal effect both in vitro and in vivo. It was also observed that the nanoparticles could be effectively up take by tumor cells and inhibited their migration. From the results of the in vivo experiment, this nanoplatform could completely eliminate the primary tumors, prevent tumor relapses on LLC (Lewis lung cancer) tumor models, and significantly inhibit metastasis on 4T1 (murine breast cancer) tumor models. The underlying mechanism was also explored. It was discovered that this nanoplatform could induce a strong ICD effect and promote the release of damage-associated molecular patterns (DAMPs) including CRT, ATP, and HMGB1 by the dying tumor cells. And the CSP could assist the DAMPs in inducing the maturation of dendritic cells (DCs) and facilitate the intratumoral infiltration of T lymphocytes to clear up the residual or disseminated tumor cells. In summary, this study demonstrated that the DTX-loaded Zein/CSP-GTP/FeIII is a promising nanoplatform to completely inhibit tumor metastasis and recurrence.
Assuntos
Proteína HMGB1 , Hipertermia Induzida , Nanopartículas , Neoplasias , Zeína , Trifosfato de Adenosina , Animais , Linhagem Celular Tumoral , Docetaxel , Doxorrubicina/farmacologia , Compostos Férricos , Guanosina Trifosfato , Ferro , Camundongos , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Fototerapia/métodos , CháRESUMO
Porcine circovirus type 3 (PCV3) is a highly contagious virus belonging to the family Circoviridae that causes the severe dermatitis and nephropathy syndrome. To date, PCV3 has a worldwide distribution and bring huge economic losses to swine industry. Replicase (Rep) and capsid (Cap) are two major coded proteins of PCV3. Considering the large number of new PCV3 isolates were reported in the past few years and the research for the codon usage pattern of Rep and Cap genes was still a gap, phylogenetic and codon usage analysis of these two genes was performed. Phylogenetic analyses showed that Rep genes in PCV3a were dispersed with no clear clusters while corresponding sequences in PCV3b clustered into two groups and Cap genes clustered into distinct clades according to different genotypes. Relative synonymous codon usage (RSCU) analysis revealed that the codon usage bias existed and effective number of codon (ENC) analysis showed that the bias was slight low. ENC-GC3s plot indicated that mutational pressure and other factors both played a role in PCV3 codon usage and neutrality plot analysis showed that natural selection was the main force influencing the codon usage pattern. The results presented here provided the important basic data on codon usage pattern of Rep and Cap genes, and a better understanding of the evolution and potential origin of PCV3.
Assuntos
Proteínas do Capsídeo/genética , Circovirus/genética , Uso do Códon , Genes Virais/genética , Filogenia , Proteínas do Complexo da Replicase Viral/genética , Circovirus/enzimologiaRESUMO
A nodal ring semimetal (NRSM) can be driven to a spin-polarized NRSM or a spin-polarized Weyl semimetal (WSM) by a high-frequency electromagnetic field. We investigate the conditions in realizing these phases and propose a switchable spin-polarized currents generator based on periodically driven NRSMs. Both bulk and surface polarized currents are investigated. The polarization of bulk current is sensitive to the amplitude of the driving field and robust against the direction and polarization of the driving, the opaqueness of the lead-device interface and the misalignment between the nodal ring and the interface, which provides sufficient flexibility in manipulating the devices. Similar switchable polarized surface currents are also expected, which is contributed by the Fermi arc surface state associated with the WSM phases. The generation of polarized currents and the polarization switching effect offer opportunities to design periodic driving controlled topological spintronics devices based on NRSMs.