Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 173(3): 634-648.e12, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29606356

RESUMO

Identifying tumor-induced leukocyte subsets and their derived circulating factors has been instrumental in understanding cancer as a systemic disease. Nevertheless, how primary tumor-induced non-leukocyte populations in distal organs contribute to systemic spread remains poorly defined. Here, we report one population of tumor-inducible, erythroblast-like cells (Ter-cells) deriving from megakaryocyte-erythroid progenitor cells with a unique Ter-119+CD45-CD71+ phenotype. Ter-cells are enriched in the enlarged spleen of hosts bearing advanced tumors and facilitate tumor progression by secreting neurotrophic factor artemin into the blood. Transforming growth factor ß (TGF-ß) and Smad3 activation are important in Ter-cell generation. In vivo blockade of Ter-cell-derived artemin inhibits hepatocellular carcinoma (HCC) growth, and artemin deficiency abolishes Ter-cells' tumor-promoting ability. We confirm the presence of splenic artemin-positive Ter-cells in human HCC patients and show that significantly elevated serum artemin correlates with poor prognosis. We propose that Ter-cells and the secreted artemin play important roles in cancer progression with prognostic and therapeutic implications.


Assuntos
Progressão da Doença , Eritroblastos/citologia , Proteínas do Tecido Nervoso/sangue , Baço/citologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Apoptose , Carcinoma Hepatocelular/metabolismo , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Células Hep G2 , Humanos , Antígenos Comuns de Leucócito/metabolismo , Leucócitos/citologia , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Invasividade Neoplásica/genética , Transdução de Sinais
3.
Nat Immunol ; 15(7): 612-22, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24859449

RESUMO

Excessive activation of dendritic cells (DCs) leads to the development of autoimmune and inflammatory diseases, which has prompted a search for regulators of DC activation. Here we report that Rhbdd3, a member of the rhomboid family of proteases, suppressed the activation of DCs and production of interleukin 6 (IL-6) triggered by Toll-like receptors (TLRs). Rhbdd3-deficient mice spontaneously developed autoimmune diseases characterized by an increased abundance of the TH17 subset of helper T cells and decreased number of regulatory T cells due to the increase in IL-6 from DCs. Rhbdd3 directly bound to Lys27 (K27)-linked polyubiquitin chains on Lys302 of the modulator NEMO (IKKγ) via the ubiquitin-binding-association (UBA) domain in endosomes. Rhbdd3 further recruited the deubiquitinase A20 via K27-linked polyubiquitin chains on Lys268 to inhibit K63-linked polyubiquitination of NEMO and thus suppressed activation of the transcription factor NF-κB in DCs. Our data identify Rhbdd3 as a critical regulator of DC activation and indicate K27-linked polyubiquitination is a potent ubiquitin-linked pattern involved in the control of autoimmunity.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Autoimunidade , Células Dendríticas/imunologia , Interleucina-6/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ubiquitinação , Animais , Interleucina-6/antagonistas & inibidores , Lisina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/fisiologia , Estrutura Terciária de Proteína , Linfócitos T/imunologia , Receptores Toll-Like/fisiologia
4.
Hepatology ; 77(4): 1106-1121, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35344606

RESUMO

BACKGROUND AND AIMS: Hepatocarcinogenesis goes through HCC progenitor cells (HcPCs) to fully established HCC, and the mechanisms driving the development of HcPCs are still largely unknown. APPROACH AND RESULTS: Proteomic analysis in nonaggregated hepatocytes and aggregates containing HcPCs from a diethylnitrosamine-induced HCC mouse model was screened using a quantitative mass spectrometry-based approach to elucidate the dysregulated proteins in HcPCs. The heterotrimeric G stimulating protein α subunit (GαS) protein level was significantly increased in liver cancer progenitor HcPCs, which promotes their response to oncogenic and proinflammatory cytokine IL-6 and drives premalignant HcPCs to fully established HCC. Mechanistically, GαS was located at the membrane inside of hepatocytes and acetylated at K28 by acetyltransferase lysine acetyltransferase 7 (KAT7) under IL-6 in HcPCs, causing the acyl protein thioesterase 1-mediated depalmitoylation of GαS and its cytoplasmic translocation, which were determined by GαS K28A mimicking deacetylation or K28Q mimicking acetylation mutant mice and hepatic Kat7 knockout mouse. Then, cytoplasmic acetylated GαS associated with signal transducer and activator of transcription 3 (STAT3) to impede its interaction with suppressor of cytokine signaling 3, thus promoting in a feedforward manner STAT3 phosphorylation and the response to IL-6 in HcPCs. Clinically, GαS, especially K28-acetylated GαS, was determined to be increased in human hepatic premalignant dysplastic nodules and positively correlated with the enhanced STAT3 phosphorylation, which were in accordance with the data obtained in mouse models. CONCLUSIONS: Malignant progression of HcPCs requires increased K28-acetylated and cytoplasm-translocated GαS, causing enhanced response to IL-6 and driving premalignant HcPCs to fully established HCC, which provides mechanistic insight and a potential target for preventing hepatocarcinogenesis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Lisina Acetiltransferases , Humanos , Camundongos , Animais , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/patologia , Interleucina-6/metabolismo , Proteômica , Citoplasma/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Lisina Acetiltransferases/metabolismo , Fator de Transcrição STAT3/metabolismo , Histona Acetiltransferases/metabolismo
5.
Nat Immunol ; 9(5): 542-50, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18391954

RESUMO

Unbalanced production of proinflammatory cytokines and type I interferons in immune responses may lead to immunopathology; thus, the mechanisms that ensure the beneficial production of proinflammatory cytokines and type I interferons are of particular importance. Here we demonstrate that the phosphatase SHP-1 negatively regulated Toll-like receptor-mediated production of proinflammatory cytokines by inhibiting activation of the transcription factor NF-kappaB and mitogen-activated protein kinase. Simultaneously, SHP-1 increased the production of type I interferon mediated by Toll-like receptors and the helicase RIG-I by directly binding to and inhibiting activation of the kinase IRAK1. Our data demonstrate that SHP-1 contributes to immune homeostasis by balancing the production of proinflammatory cytokines and type I interferons in the innate immune response.


Assuntos
Interferon Tipo I/biossíntese , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Receptores Toll-Like/metabolismo , Animais , Domínio Catalítico/fisiologia , Citocinas/biossíntese , Homeostase/imunologia , Imunidade Inata , Fator Regulador 1 de Interferon/metabolismo , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Quinases Associadas a Receptores de Interleucina-1/química , Macrófagos Peritoneais , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/imunologia , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 6/imunologia , Receptores de Superfície Celular , Transdução de Sinais , Receptores Toll-Like/imunologia
6.
Pharmacol Res ; 148: 104368, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31415918

RESUMO

In the effort to identify natural products that regulate immunity and inflammation, we found that nitidine chloride (NC), an alkaloid from herb Zanthoxylum nitidum, enhanced IL-10 production in lipopolysaccharide (LPS)-stimulated myeloid cells. While NC was shown to be capable of inhibiting topoisomerase I (TOP1), NC analogs that could not inhibit TOP1 failed to increase IL-10 production. Moreover, medicinal TOP1 inhibitors TPT and SN-38 also augmented IL-10 production significantly, whereas knockdown of TOP1 prevented NC, TPT, and SN-38 from enhancing IL-10 expression. Thus, NC promoted IL-10 production by inhibiting TOP1. In LPS-induced endotoxemic mice, NC and TOP1 inhibitors increased IL-10 production, suppressed inflammatory responses, and reduced mortality remarkably. The anti-inflammatory activities of TOP1 inhibition were markedly reduced by IL-10-neutralizing antibody and largely absent in IL-10-deficient mice. In LPS-stimulated RAW264.7 cells and in peritoneal macrophages from endotoxemic mice, NC and TOP1 inhibitors significantly enhanced the activation of Akt, a critical signal transducer for IL-10 production, and inhibition of Akt prevented these compounds from enhancing IL-10 production and ameliorating endotoxemia. These data indicated that NC and TOP1 inhibitors are able to exert anti-inflammatory action through enhancing Akt-mediated IL-10 production and may assist with the treatment of inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Benzofenantridinas/farmacologia , DNA Topoisomerases Tipo I/metabolismo , Interleucina-10/metabolismo , Animais , Linhagem Celular , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Células THP-1
7.
Hepatology ; 66(4): 1151-1164, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28520103

RESUMO

Noncoding RNAs play important roles in cancer biology, providing potential targets for cancer intervention. As a new class of endogenous noncoding RNAs, circular RNAs (circRNAs) have been recently identified in cell development and function, and certain types of pathological responses, generally acting as a microRNA (miRNA) sponge to regulate gene expression. Identifying the deregulated circRNAs and their roles in cancer has attracted much attention. However, the expression profile and function of circRNAs in human hepatocellular carcinoma (HCC) remain to be investigated. Here, we analyzed the expression profile of human circRNAs in HCC tissues and identified circMTO1 (mitochondrial translation optimization 1 homologue; hsa_circRNA_0007874/hsa_circRNA_104135) as one circRNA significantly down-regulated in HCC tissues. HCC patients with low circMTO1 expression had shortened survival. By using a biotin-labeled circMTO1 probe to perform RNA in vivo precipitation in HCC cells, we identified miR-9 as the circMTO1-associated miRNA. Furthermore, silencing of circMTO1 in HCC could down-regulate p21, the target of oncogenic miR-9, resulting in the promotion of HCC cell proliferation and invasion. In addition, the tumor-promoting effect of circMTO1 silencing was blocked by miR9 inhibitor. Intratumoral administration of cholesterol-conjugated circMTO1 small interfering RNA promoted tumor growth in HCC-bearing mice in vivo. CONCLUSION: circMTO1 suppresses HCC progression by acting as the sponge of oncogenic miR-9 to promote p21 expression, suggesting that circMTO1 is a potential target in HCC treatment. The decrease of circMTO1 in HCC tissues may serve as a prognosis predictor for poor survival of patients. (Hepatology 2017;66:1151-1164).


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas Experimentais/metabolismo , MicroRNAs/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/diagnóstico , Células Hep G2 , Humanos , Masculino , Camundongos Nus , Prognóstico
8.
Hepatology ; 66(1): 152-166, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28295457

RESUMO

Adjuvant interferon-α (IFN-α) therapy is used to control certain types of cancer in clinics. For hepatocellular carcinoma (HCC), IFN-α therapy is effective in only a subgroup of patients; therefore, identifying biomarkers to predict the response to IFN-α therapy is of high significance and clinical utility. As the induced IFN-stimulated gene expression following IFN-α treatment plays pivotal roles in IFN-α effects, we screened IFN-stimulated gene expression in HCC tissues and found that several IFN-stimulated genes were significantly decreased in HCC. Interestingly, expression of IFN-induced protein with tetratricopeptide repeats (IFIT) family members, including IFIT1, IFIT2, IFIT3, and IFIT5, was decreased in HCC tissues. We further analyzed the expression of IFIT family members in HCC and their roles in patients' responses to IFN-α therapy in two independent randomized controlled IFN-α therapy clinical trials of HCC patients. We found that higher expression of IFIT3, but not other IFITs, in HCC tissues predicts better response to IFN-α therapy, suggesting that IFIT3 may be a useful predictor of the response to IFN-α therapy in HCC patients. Mechanistically, IFIT3 enhanced the antitumor effects of IFN-α by promoting IFN-α effector responses both in vitro and in vivo. IFIT3 could bind signal transducer and activator of transcription 1 (STAT1) and STAT2 to enhance STAT1-STAT2 heterodimerization and nuclear translocation upon IFN-α treatment, thus promoting IFN-α effector signaling. CONCLUSION: Higher IFIT3 expression in HCC tissues predicts better response to IFN-α therapy in HCC patients; IFIT3 promotes IFN-α effector responses and therapeutic effects by strengthening IFN-α effector signaling in HCC. (Hepatology 2017;66:152-166).


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Interferon-alfa/uso terapêutico , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Adulto , Idoso , Análise de Variância , Biópsia por Agulha , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Estudos de Coortes , Intervalo Livre de Doença , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Valor Preditivo dos Testes , Prognóstico , Modelos de Riscos Proporcionais , Medição de Risco , Taxa de Sobrevida , Resultado do Tratamento
12.
Int J Med Sci ; 13(2): 154-60, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26941575

RESUMO

Mesenchymal stem cells (MSCs) derived from bone marrow are plural-potent stem cells with immune regulatory functions. We aimed to evaluate role of FcγRIIB in the regulation of bone marrow-derived MSC function. MSCs were prepared from mouse bone marrow derived from wild-type (WT) or FcγRIIB-deficient (FcγRIIB-/-) mice. MSCs were co-cultured with bone marrow-derived dendritic cells (BMDCs), and BMDC maturation and function were evaluated by flow cytometric analysis and carboxyfluorescein succinimidyl ester-labeled OT-II T-cell addition. An acute asthma model was established by aeresol ovalbumin challenge in mice. Mice received WT or FcγRIIB-/- MSC therapy. Lung function was evaluated by histological examination and cytokine production measurement. mRNA and protein expression levels of target genes were examined by real-time quantitative polymerase chain reactionor western blotting. We found that MSCs derived from bone marrow exhibit a high level of FcγRIIB expression. FcγRIIB deficiency impaired the suppressive function of MSCs, as FcγRIIB deficiency efficiently reversed the inhibitory effect of MSCs on BMDC maturation and function. Additionally, FcγRIIB-/-MSCs were less potent at suppressing asthma in model mice, possibly through reduced expression of Smad2, Smad3, Cox-2, and prostaglandin E2 in FcγRIIB-/-MSCs. FcγRIIB might play an essential role in regulating the inhibitory effects of MSCs derived from bone marrow.


Assuntos
Células-Tronco Mesenquimais/fisiologia , Receptores de IgG/metabolismo , Animais , Asma/etiologia , Células Cultivadas , Técnicas de Cocultura , Ciclo-Oxigenase 2/metabolismo , Células Dendríticas/citologia , Células Dendríticas/fisiologia , Dinoprostona/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Camundongos Knockout , Receptores de IgG/genética , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Linfócitos T/imunologia
13.
Hepatology ; 59(2): 567-79, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23960017

RESUMO

UNLABELLED: Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide with limited therapeutic options. HCC-induced immunosuppression often leads to ineffectiveness of immuno-promoting therapies. Currently, suppressing the suppressors has become the potential strategy for cancer immunotherapy. So, figuring out the immunosuppressive mechanisms induced and employed by HCC will be helpful to the design and application of HCC immunotherapy. Here, we identified one new subset of human CD14(+) CTLA-4(+) regulatory dendritic cells (CD14(+) DCs) in HCC patients, representing ∼13% of peripheral blood mononuclear cells. CD14(+) DCs significantly suppress T-cell response in vitro through interleukin (IL)-10 and indoleamine-2,3-dioxygenase (IDO). Unexpectedly, CD14(+) DCs expressed high levels of cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed death-1, and CTLA-4 was found to be essential to IL-10 and IDO production. So, we identified a novel human tumor-induced regulatory DC subset, which suppresses antitumor immune response through CTLA-4-dependent IL-10 and IDO production, thus indicating the important role of nonregulatory T-cell-derived CTLA-4 in tumor-immune escape or immunosuppression. CONCLUSIONS: These data outline one mechanism for HCC to induce systemic immunosuppression by expanding CD14(+) DCs, which may contribute to HCC progression. This adds new insight to the mechanism for HCC-induced immunosuppression and may also provide a previously unrecognized target of immunotherapy for HCC.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Antígeno CTLA-4/metabolismo , Carcinoma Hepatocelular/metabolismo , Células Dendríticas/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interleucina-10/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Neoplasias Hepáticas/metabolismo , Adolescente , Adulto , Idoso , Antígeno CD11b/metabolismo , Linfócitos T CD4-Positivos/patologia , Carcinoma Hepatocelular/patologia , Estudos de Casos e Controles , Células Dendríticas/patologia , Progressão da Doença , Feminino , Humanos , Terapia de Imunossupressão , Imunoterapia , Técnicas In Vitro , Leucócitos Mononucleares/patologia , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Fenótipo , Receptor de Morte Celular Programada 1/metabolismo , Adulto Jovem
15.
J Biol Chem ; 288(39): 27825-35, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23943615

RESUMO

Dendritic cells (DCs) play important roles in the initiation of immune response and also in the maintenance of immune tolerance. Now, many kinds of regulatory DCs with different phenotypes have been identified to suppress immune response and contribute to the control of autoimmune diseases. However, the mechanisms by which regulatory DCs can be regulated to exert the immunosuppressive function in the immune microenvironment remain to be fully investigated. In addition, how T cells, once activated, can feedback affect the function of regulatory DCs during immune response needs to be further identified. We previously identified a unique subset of CD11b(hi)Ia(low) regulatory DCs, differentiated from mature DCs or hematopoietic stem cells under a stromal microenvironment in spleen and liver, which can negatively regulate immune response in a feedback way. Here, we show that CD11b(hi)Ia(low) regulatory DCs expressed high level of Fas, and endothelial stromal cell-derived TGF-ß could induce high expression of Fas on regulatory DCs via ERK activation. Fas ligation could promote regulatory DCs to inhibit CD4(+) T cell proliferation more significantly. Furthermore, Fas ligation preferentially induced regulatory DCs to produce IL-10 and IP-10 via ERK-mediated inactivation of GSK-3 and subsequent up-regulation of ß-catenin. Interestingly, activated T cells could promote regulatory DCs to secrete more IL-10 and IP-10 partially through FasL. Therefore, our results demonstrate that Fas signal, at least from the activated T cells, can promote the immunosuppressive function of Fas-expressing regulatory DCs, providing a new manner for the regulatory DCs to regulate adaptive immunity.


Assuntos
Células Dendríticas/citologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Transdução de Sinais , beta Catenina/metabolismo , Receptor fas/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Células da Medula Óssea/citologia , Linfócitos T CD4-Positivos/citologia , Quimiocina CXCL10/metabolismo , Ativação Enzimática , Quinase 3 da Glicogênio Sintase/metabolismo , Homeostase , Sistema Imunitário , Terapia de Imunossupressão , Interleucina-10/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
16.
Signal Transduct Target Ther ; 9(1): 87, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584157

RESUMO

The gasdermin (GSDM) family has garnered significant attention for its pivotal role in immunity and disease as a key player in pyroptosis. This recently characterized class of pore-forming effector proteins is pivotal in orchestrating processes such as membrane permeabilization, pyroptosis, and the follow-up inflammatory response, which are crucial self-defense mechanisms against irritants and infections. GSDMs have been implicated in a range of diseases including, but not limited to, sepsis, viral infections, and cancer, either through involvement in pyroptosis or independently of this process. The regulation of GSDM-mediated pyroptosis is gaining recognition as a promising therapeutic strategy for the treatment of various diseases. Current strategies for inhibiting GSDMD primarily involve binding to GSDMD, blocking GSDMD cleavage or inhibiting GSDMD-N-terminal (NT) oligomerization, albeit with some off-target effects. In this review, we delve into the cutting-edge understanding of the interplay between GSDMs and pyroptosis, elucidate the activation mechanisms of GSDMs, explore their associations with a range of diseases, and discuss recent advancements and potential strategies for developing GSDMD inhibitors.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Sepse , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Gasderminas , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Piroptose
17.
Am J Cancer Res ; 14(4): 1712-1729, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726277

RESUMO

Melanoma is the most aggressive type of skin cancer and has a high mortality rate once metastasis occurs. Hypoxia is a universal characteristic of the microenvironment of cancer and a driver of melanoma progression. In recent years, long noncoding RNAs (lncRNAs) have attracted widespread attention in oncology research. In this study, screening was performed and revealed seven hypoxia-related lncRNAs AC008687.3, AC009495.1, AC245128.3, AL512363.1, LINC00518, LINC02416 and MCCC1-AS1 as predictive biomarkers. A predictive risk model was constructed via univariate Cox regression analysis, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analyses. Patients were grouped according to the model risk score, and Kaplan-Meier analysis was performed to compare survival between groups. Functional and pathway enrichment analyses were performed to compare gene set enrichment between groups. Moreover, a nomogram was constructed with the risk score as a variable. In both the training and validation sets, patients in the low-risk group had better overall survival than did those in the high-risk group (P<0.001). The 3-, 5- and 10-year area under the curve (AUC) values for the nomogram model were 0.821, 0.795 and 0.820, respectively. Analyses of immune checkpoints, immunotherapy response, drug sensitivity, and mutation landscape were also performed. The results suggested that the low-risk group had a better response to immunotherapeutic. In addition, the nomogram can effectively predict the prognosis and immunotherapy response of melanoma patients. The signature of seven hypoxia-related lncRNAs showed great potential value as an immunotherapy response biomarker, and these lncRNAs might be treatment targets for melanoma patients.

18.
Mil Med Res ; 11(1): 22, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622688

RESUMO

BACKGROUND: Liver ischemia/reperfusion (I/R) injury is usually caused by hepatic inflow occlusion during liver surgery, and is frequently observed during war wounds and trauma. Hepatocyte ferroptosis plays a critical role in liver I/R injury, however, it remains unclear whether this process is controlled or regulated by members of the DEAD/DExH-box helicase (DDX/DHX) family. METHODS: The expression of DDX/DHX family members during liver I/R injury was screened using transcriptome analysis. Hepatocyte-specific Dhx58 knockout mice were constructed, and a partial liver I/R operation was performed. Single-cell RNA sequencing (scRNA-seq) in the liver post I/R suggested enhanced ferroptosis by Dhx58hep-/-. The mRNAs and proteins associated with DExH-box helicase 58 (DHX58) were screened using RNA immunoprecipitation-sequencing (RIP-seq) and IP-mass spectrometry (IP-MS). RESULTS: Excessive production of reactive oxygen species (ROS) decreased the expression of the IFN-stimulated gene Dhx58 in hepatocytes and promoted hepatic ferroptosis, while treatment using IFN-α increased DHX58 expression and prevented ferroptosis during liver I/R injury. Mechanistically, DHX58 with RNA-binding activity constitutively associates with the mRNA of glutathione peroxidase 4 (GPX4), a central ferroptosis suppressor, and recruits the m6A reader YT521-B homology domain containing 2 (YTHDC2) to promote the translation of Gpx4 mRNA in an m6A-dependent manner, thus enhancing GPX4 protein levels and preventing hepatic ferroptosis. CONCLUSIONS: This study provides mechanistic evidence that IFN-α stimulates DHX58 to promote the translation of m6A-modified Gpx4 mRNA, suggesting the potential clinical application of IFN-α in the prevention of hepatic ferroptosis during liver I/R injury.


Assuntos
Ferroptose , Traumatismo por Reperfusão , Animais , Camundongos , Diclorodifenil Dicloroetileno , Hepatócitos , Interferon-alfa , RNA , RNA Mensageiro
19.
J Biol Chem ; 287(32): 26740-8, 2012 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-22707723

RESUMO

Macrophage activation, including classical (M1) activation and alternative (M2) activation, plays important roles in host immune response and pathogenesis of diseases. Ubiquitination has been shown to be involved in the differentiation of immune cells and in the regulation of immune responses. However, the role of ubiquitination during M1 versus M2 polarization is poorly explored. Here, we showed that arginase 1 (Arg1), a well recognized marker of M2 macrophages, is highly up-regulated in peritoneal macrophages derived from E3 ubiquitin ligase Nrdp1 transgenic (Nrdp1-TG) mice. Furthermore, other M2 feature markers such as MR, Ym1, and Fizz1, as well as Th2 cytokine IL-10, are also up-regulated in Nrdp1-TG macrophages after IL-4 stimulation. Knockdown of Nrdp1 expression effectively inhibits IL-4-induced expression of M2-related genes in macrophages. Moreover, Nrdp1 inhibits LPS-induced production of inducible NOS and pro-inflammatory cytokines TNF-α, IL-1ß, and IL-6 in macrophages. Immunoprecipitation assays show that Nrdp1 interacts with and ubiquitinates transcriptional factor C/EBPß via Lys-63-linked ubiquitination. Nrdp1 enhances C/EBPß-triggered transcriptional activation of the Arg1 reporter gene in the presence of IL-4 stimulation. Thus, we demonstrate that Nrdp1-mediated ubiquitination and activation of C/EBPß contributes to a ubiquitin-dependent nonproteolytic pathway that up-regulates Arg1 expression and promotes M2 macrophage polarization.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteínas de Transporte/fisiologia , Macrófagos/metabolismo , Animais , Arginase/metabolismo , Sequência de Bases , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Citocinas/biossíntese , Primers do DNA , Inativação Gênica , Imunoprecipitação , Macrófagos/citologia , Macrófagos/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Óxido Nítrico Sintase Tipo II/metabolismo , Reação em Cadeia da Polimerase , Ligação Proteica , Transcrição Gênica/fisiologia , Ubiquitina-Proteína Ligases , Regulação para Cima/fisiologia
20.
Front Oncol ; 13: 1149370, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143953

RESUMO

Background: Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer with high heterogeneity. The prognosis of HCC is quite poor and the prognostic prediction also has challenges. Ferroptosis is recently recognized as a kind of iron-dependent cell death, which is involved in tumor progression. However, further study is needed to validate the influence of drivers of ferroptosis (DOFs) on the prognosis of HCC. Methods: The FerrDb database and the Cancer Genome Atlas (TCGA) database were applied to retrieve DOFs and information of HCC patients respectively. HCC patients were randomly divided into training and testing cohorts with a 7:3 ratio. Univariate Cox regression, LASSO and multivariate Cox regression analyses were carried out to identify the optimal prognosis model and calculate the risk score. Then, univariate and multivariate Cox regression analyses were performed to assess the independence of the signature. At last, gene functional, tumor mutation and immune-related analyses were conducted to explore the underlying mechanism. Internal and external databases were used to confirm the results. Finally, the tumor tissue and normal tissue from HCC patients were applied to validate the gene expression in the model. Results: Five genes were identified to develop as a prognostic signature in the training cohort relying on the comprehensive analysis. Univariate and multivariate Cox regression analyses confirmed that the risk score was able to be an independent factor for the prognosis of HCC patients. Low-risk patients showed better overall survival than high-risk patients. Receiver operating characteristic (ROC) curve analysis confirmed the signature's predictive capacity. Furthermore, internal and external cohorts were consistent with our results. There was a higher proportion of nTreg cell, Th1 cell, macrophage, exhausted cell and CD8+T cell in the high-risk group. The Tumor Immune Dysfunction and Exclusion (TIDE) score suggested that high-risk patients could respond better to immunotherapy. Besides, the experimental results showed that some genes were differentially expressed between tumor and normal tissues. Conclusion: In summary, the five ferroptosis gene signature showed potential in prognosis of patients with HCC and could also be regarded as a value biomarker for immunotherapy response in these patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA