Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38578377

RESUMO

Timolol maleate (TML) is a beta-blocker drug that is commonly used to lower the intraocular pressure in glaucoma. This study focused on using a 3D printing (3DP) method for the manufacturing of an ocular, implantable, sustained-release drug delivery system (DDS). Polycaprolactone (PCL), and PCL with 5 or 10% TML implants were manufactured using a one-step 3DP process. Their physicochemical characteristics were analysed using light microscopy, scanning electronic microscopy (SEM), differential scanning calorimetry (DSC) / thermal gravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FTIR). The in vitro drug release was evaluated by UV-spectrophotometry. Finally, the effect of the implants on cell viability in human trabecular meshwork cells was assessed. All the implants showed a smooth surface. Thermal analysis demonstrated that the implants remained thermally stable at the temperatures used for the printing, and FTIR studies showed that there were no significant interactions between PCL and TML. Both concentrations (5 & 10%) of TML achieved sustained release from the implants over the 8-week study period. All implants were non-cytotoxic to human trabecular cells. This study shows proof of concept that 3DP can be used to print biocompatible and personalised ocular implantable sustained-release DDSs for the treatment of glaucoma.

2.
Int J Biol Macromol ; 272(Pt 1): 132655, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38797299

RESUMO

Monoclonal antibodies (mAbs) have garnered substantial attention within the field of ophthalmology and can be used to suppress scar formation after minimally invasive glaucoma surgeries. Here, by controlling mAb passive diffusion, we developed a polymeric, rate-controlling membrane reservoir loaded with poly(lactic-co-glycolic acid) microspheres to deliver mAb for several weeks. Different parameters were tested to ensure that the microspheres achieved a good quality characteristic, and our results showed that 1 %W/V emulsifier with 5 %W/V NaCl achieved mAb-loaded microspheres with the highest stability, encapsulation efficiency and minimal burst release. Then, we fabricated and compared 10 types of microporous films based on polylactic acid (PLA), polycaprolactone (PCL), and polyethylene glycol (PEG). Our results revealed distinct pore characteristics and degradation patterns in different films due to varying polymer properties, and all the polymeric film formulations showed good biocompatibility in both human trabecular meshwork cells and human conjunctival fibroblasts. Finally, the optimized microspheres were loaded into the reservoir-type polymeric implant assembled by microporous membranes with different surface coating modifications. The implant formulation, which was fabricated by 60 PCL: 40 PEG (3 %W/V) polymer with 0.1 %W/V poly(lactic-co-glycolic acid) barrier, exerted the best drug release profile that can sustained release mAb (83.6 %) for 4 weeks.


Assuntos
Anticorpos Monoclonais , Glaucoma , Microesferas , Humanos , Glaucoma/cirurgia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/química , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Poliésteres/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Polímeros/química , Polietilenoglicóis/química , Porosidade , Portadores de Fármacos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA