Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38923085

RESUMO

Cotton is a globally cultivated crop, producing 87% of the natural fiber used in the global textile industry. The pigment glands, unique to cotton and its relatives, serve as a defense structure against pests and pathogens. However, the molecular mechanism underlying gland formation and the specific role of pigment glands in cotton's pest defense are still not well understood. In this study, we cloned a gland-related transcription factor GhHAM and generated the GhHAM knockout mutant using CRISPR/Cas9. Phenotypic observations, transcriptome analysis, and promoter-binding experiments revealed that GhHAM binds to the promoter of GoPGF, regulating pigment gland formation in cotton's multiple organs via the GoPGF-GhJUB1 module. The knockout of GhHAM significantly reduced gossypol production and increased cotton's susceptibility to pests in the field. Feeding assays demonstrated that more than 80% of the cotton bollworm larvae preferred ghham over the wild type. Furthermore, the ghham mutants displayed shorter cell length and decreased gibberellins (GA) production in the stem. Exogenous application of GA3 restored stem cell elongation but not gland formation, thereby indicating that GhHAM controls gland morphogenesis independently of GA. Our study sheds light on the functional differentiation of HAM proteins among plant species, highlights the significant role of pigment glands in influencing pest feeding preference, and provides a theoretical basis for breeding pest-resistant cotton varieties to address the challenges posed by frequent outbreaks of pests.

2.
Environ Toxicol ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717028

RESUMO

Salmonella infections are a serious global health concern, particularly in developing countries, and are further exacerbated by the emergence of antibiotic resistance. San-Huang-Xie-Xin-Tang (SHXXT), a traditional herbal medicine with potent anti-inflammatory properties, has recently gained attention as an alternative treatment. Our study emphasizes on the importance of precise timing in accordance with traditional Chinese medicine principles. A mouse infection model was established while different administration times of SHXXT were recorded for the body weight, clinical scores, bacterial counts in blood, and organs. Additionally, cytokine levels, fatty acids, and amino acids in the serum were also monitored. We found that administering SHXXT 1 day after Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) infection (T1 group) leads to positive outcomes. This includes restoration of body weight, improved clinical scores, and reduced bacterial counts in blood and vital organs. Interferon-gamma levels remained consistently high across all treatment groups 6 days post-infection. However, the T1 group showed exclusive suppression of serum levels of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1ß). The timing of administration significantly influenced serum fatty acid concentrations, countering Salmonella-induced disruptions, aligning with TNF-α and IL-1ß levels. SHXXT had also restored amino acid profiles disrupted by the infection, with notable effects when administered at the correct timing. Our research highlights SHXXT's potential in treating S. Typhimurium infection, emphasizing the importance of precise timing in line with traditional Chinese medicine principles for effective treatment at different disease stages.

3.
Phytochem Anal ; 35(3): 530-539, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009261

RESUMO

INTRODUCTION: Prunellae Spica (PS), derived from the dried fruit spikes of Prunella vulgaris L., is a traditional Chinese medicinal herb. Our previous studies found that PVE30, a water-extracting ethanol-precipitating "glycoprotein" macromolecule of PS, was a potential anti-herpes simplex virus (HSV) candidate. However, due to the complex structure and diverse bioactivity of the "glycoprotein", ensuring its quality consistency across different batches of PVE30 becomes particularly challenging. This poses a significant hurdle for new drug development based on PVE30. OBJECTIVE: Our study aimed to integrate multi-index determination coupled with hierarchical cluster analysis (HCA) to holistically profile the quality consistency of "glycoprotein" in PVE30. METHODS: High-performance gel permeation chromatography with refractive index detector (HPGPC-RID) was used to characterise the molecular weight (Mw) distribution, HPLC-PDA was used to quantitatively analyse the composed monosaccharides and amino acids, and UV-VIS was used to quantify the contents of polysaccharides and proteins. Qualitative and quantitative consistency was analysed for each single index in 16 batches of PVE30, and a 16 × 38 data matrix, coupled with HCA, was used to evaluate the holistic quality consistency of PVE30. RESULTS: The newly developed and validated methods were exclusive, linear, precise, accurate, and stable enough to quantify multi-indexes in PVE30. Single-index analysis revealed that 16 batches of PVE30 were qualitatively consistent in Mw distribution, polysaccharides and proteins, and the composition of composed monosaccharides and amino acids but quantitatively inconsistent in the relative contents of some "glycoprotein" macromolecules, as well as the composed monosaccharides/amino acids. HCA showed that the holistic quality of PVE30 was inconsistent, the inconsistency was uncorrelated with the regions where PS was commercially collected, and the contents of 17 amino acids and 2 monosaccharides contributed most to the holistic quality inconsistency. CONCLUSION: Multi-index determination coupled with HCA was successful in evaluating the quality consistency of PVE30, and the significant difference in quantitative indices was not caused by the origin of PS. The cultivating basis should be confirmed for PVE30-based new drug development.


Assuntos
Medicamentos de Ervas Chinesas , Simplexvirus , Aminoácidos , Análise por Conglomerados , Polissacarídeos , Monossacarídeos , Cromatografia Líquida de Alta Pressão/métodos
4.
Small ; 19(46): e2302962, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37518765

RESUMO

Retinal degeneration (RD) is an irreversible blinding disease that seriously affects patients' daily activities and mental health. Targeting hyperactivated microglia and regulating polarization are promising strategies for treating the disease. Mesenchymal stem cell (MSC) transplantation is proven to be an effective treatment due to its immunomodulatory and regenerative properties. However, the low efficiency of cell migration and integration of MSCs remains a major obstacle to clinical use. The goal of this study is to develop a nanodelivery system that targets hyperactivated microglia and inhibits their release of proinflammatory factors, to achieve durable neuroprotection. This approach is to engineer extracellular vesicles (EVs) isolated from MSC, modify them with a cyclic RGD (cRGD) peptide on their surface, and load them with an antagonist of the IL-1 receptor, anakinra. Comparing with non-engineered EVs, it is observed that engineered cRGD-EVs exhibit an increased targeting efficiency against hyperactivated microglia and strongly protected photoreceptors in experimental RD cells and animal models. This study provides a strategy to improve drug delivery to degenerated retinas and offers a promising approach to improve the treatment of RD through targeted modulation of the immune microenvironment via engineered cRGD-EVs.


Assuntos
Vesículas Extracelulares , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Degeneração Retiniana , Animais , Humanos , Degeneração Retiniana/terapia , Degeneração Retiniana/metabolismo , Vesículas Extracelulares/metabolismo , Retina
5.
Cancer Cell Int ; 23(1): 14, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36717845

RESUMO

BACKGROUND: As a prodrug of 5-fluorouracil (5-FU), orally administrated capecitabine (CAP) undergoes preliminary conversion into active metabolites in the liver and then releases 5-FU in the gut to exert the anti-tumor activity. Since metabolic changes of CAP play a key role in its activation, a single kind of intestinal or hepatic cell can never be used in vitro to evaluate the pharmacokinetics (PK) and pharmacodynamics (PD) nature. Hence, we aimed to establish a novel in vitro system to effectively assess the PK and PD of these kinds of prodrugs. METHODS: Co-culture cellular models were established by simultaneously using colorectal cancer (CRC) and hepatocarcinoma cell lines in one system. Cell Counting Kit-8 (CCK-8) and flow cytometric analysis were used to evaluate cell viability and apoptosis, respectively. Apoptosis-related protein expression levels were measured using western blot analysis. A selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for cellular PK in co-culture models. RESULTS: CAP had little anti-proliferative effect on the five monolayer CRC cell lines (SW480, LoVo, HCT-8, HCT-116 and SW620) or the hepatocarcinoma cell line (HepG2). However, CAP exerted marked anti-tumor activities on each of the CRC cell lines in the co-culture models containing both CRC and hepatocarcinoma cell lines, although its effect on the five CRC cell lines varied. Moreover, after pre-incubation of CAP with HepG2 cells, the culture media containing the active metabolites of CAP also showed an anti-tumor effect on the five CRC cell lines, indicating the crucial role of hepatic cells in the activation of CAP. CONCLUSION: The simple and cost­effective co-culture models with both CRC and hepatocarcinoma cells could mimic the in vivo process of a prodrug dependent on metabolic conversion to active metabolites in the liver, providing a valuable strategy for evaluating the PK and PD characteristics of CAP-like prodrugs in vitro at the early stage of drug development.

6.
J Sep Sci ; 46(17): e2300087, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37380621

RESUMO

Fuzhuan brick tea, a distinctive dark tea fermented by microorganisms, is a traditional beverage in China throughout history. Recently, it has attracted considerable attention owing to its unique quality characteristics and potential health benefits. The aim of this study was to establish a method for the quality control of Fuzhuan brick tea for stable production. Ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry was used to identify Fuzhuan brick tea, and the major components were chosen for further quantitative analysis. Subsequently, a quantification method was developed using ultra-high-performance liquid chromatography coupled with triple-quadrupole mass spectrometry, and its reliability was verified through methodological validation. Finally, a total of 30 compounds were identified, including catechins, flavonoids, alkaloids, and fatty acids. The established method was reliable for methodological validation and was applied to the quantitative analysis of Fuzhuan brick tea. This study provides a fundamental basis for the quality control and further studies on the component analysis of Fuzhuan brick tea.


Assuntos
Flavonoides , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos , Flavonoides/análise , Chá/química
7.
Retina ; 43(4): 606-615, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36728897

RESUMO

IN BRIEF: Nanopore targeted sequencing showed a higher positivity rate and a shorter turnaround time than did traditional culture in identifying pathogens in the intraocular fluid samples of patients with endogenous endophthalmitis. PURPOSE: To evaluate the feasibility of clinical application of nanopore targeted sequencing (NTS) for the identification of pathogens in patients with endogenous endophthalmitis, especially those with fungus-associated endophthalmitis. METHODS: In this retrospective study, medical records and etiological results of 27 patients (34 eyes) with endogenous endophthalmitis were reviewed. The intraocular fluid samples were examined using both NTS and microbial culture. The results included the differences in detection time, positivity rate of pathogen detection, and positivity rate of fungus identification between two methods. RESULTS: NTS and microbial culture enabled the detection of etiologic agents in 89.28% and 35.71% of the samples, respectively. The difference of positivity rate between these methods was statistically significant ( P < 0.001). NTS also showed high sensitivity in both culture-positive and culture-negative samples (100% and 83.33%, respectively). Regarding culture-positive samples, the NTS results displayed a strong match with culture results. NTS showed a significantly higher positivity rate for fungal infection than did microbial culture (46.43% vs. 7.14%, P = 0.002). The average detection time of NTS was 1.11 ± 0.31 days, which was shorter than that of microbial culture (2.50 ± 0.58 days, Z = -4.686, P < 0.001). NTS technology facilitated an informed switch of intravitreal antimicrobial agents in 13 eyes. CONCLUSION: NTS, as a sensitive, specific, and timely complementary method, can be used along with traditional methods for the identification of pathogenic microorganisms in the intraocular fluid of patients with endogenous endophthalmitis.


Assuntos
Endoftalmite , Infecções Oculares Bacterianas , Infecções Oculares Fúngicas , Nanoporos , Humanos , Humor Aquoso/microbiologia , Estudos Retrospectivos , Endoftalmite/diagnóstico , Endoftalmite/microbiologia , Infecções Oculares Fúngicas/diagnóstico , Infecções Oculares Fúngicas/microbiologia , Infecções Oculares Bacterianas/diagnóstico , Infecções Oculares Bacterianas/microbiologia
8.
Small ; 18(16): e2105738, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35253978

RESUMO

Fast charging rate and large energy storage are key requirements for lithium-ion batteries (LIBs) in electric vehicles. Developing electrode materials with high volumetric and gravimetric capacity that could be operated at a high rate is the most challenging problem. In this work, a general multi-interface strategy toward densified carbon materials with enhanced comprehensive electrochemical performance for Li/Na-ion batteries is proposed. The mixture of graphene oxide and sucrose solution is sprayed into a water/oil system and furtherly carbonized to get graphene/hard carbon spheres (GHSs). In this material, abundant ingenious internal interfaces between the crystalline graphene and the carbon matrix are created inside the hard carbon spheres. The constructed interfaces can not only work as a pathway for the escape of volatile gas generated during sucrose pyrolysis to prevent the formation of abundant pores, which leads high packing density of 0.910 g cm-3 and low surface area of 13.3 m2  g-1 , but can also provide a conductive "highway" for ions and electrons. When used as the anode material for both LIBs and sodium-ion batteries (SIBs), the GHS shows the high gravimetric/volumetric reversible capacities, high-rate performance, and low temperature properties simultaneously, implying the great potential application in practical LIBs and SIBs.

9.
J Sep Sci ; 45(24): 4397-4406, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36271738

RESUMO

An active substance of pyrano[3,2-a]phenazine, also called CPUL1, is a synthesized phenazine derivative and displays broad-spectrum anticancer activities. Quantitative assessment of CPUL1 in biological samples has not been well established, hindering pharmaceutical development and application. According to international guidelines, a sensitive and selective liquid chromatography-tandem mass spectrometry method in negative ion mode was developed and validated for quantification of CPUL1 in human plasma, colorectal cancer cell lines, and rat plasma, whereby linearity and accuracy were demonstrated for the range of 1-1000 ng/ml. The validated liquid chromatography-tandem mass spectrometry method was successfully employed in pharmacokinetic studies of CPUL1 in vitro and in vivo. Notably, the cellular pharmacokinetic behavior of CPUL1 varies in colorectal cancer cell lines. Regarding the pharmacokinetic processes in vivo, oral absorption was less effective than an injection, with a bioavailability of 23.66%. CPUL1 was linearly eliminated after a single administration; however, it could accumulate in tissues (heart, liver, spleen, lung, and kidney) after multiple injections. In summary, this study established a capable bioanalytical method for CPUL1 and provided exploratory pharmacokinetic data, paving the way for use of this promising derivative in disease models.


Assuntos
Neoplasias Colorretais , Espectrometria de Massas em Tandem , Ratos , Humanos , Animais , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Plasma/química , Fenazinas/análise , Cromatografia Líquida de Alta Pressão/métodos , Reprodutibilidade dos Testes
10.
Cancer Sci ; 112(10): 4234-4245, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34382727

RESUMO

Development of acquired resistance to lapatinib, a dual epidermal growth factor receptor (EGFR)/human epidermal growth factor receptor 2 (HER2) tyrosine kinase inhibitor, severely limits the duration of clinical response in advanced HER2-driven breast cancer patients. Although the compensatory activation of the PI3K/Akt survival signal has been proposed to cause acquired lapatinib resistance, comprehensive molecular mechanisms remain required to develop more efficient strategies to circumvent this therapeutic difficulty. In this study, we found that suppression of HER2 by lapatinib still led to Akt inactivation and elevation of FOX3a protein levels, but failed to induce the expression of their downstream pro-apoptotic effector p27kip1 , a cyclin-dependent kinase inhibitor. Elevation of miR-221 was found to contribute to the development of acquired lapatinib resistance by targeting p27kip1 expression. Furthermore, upregulation of miR-221 was mediated by the lapatinib-induced Src family tyrosine kinase and subsequent NF-κB activation. The reversal of miR-221 upregulation and p27kip1 downregulation by a Src inhibitor, dasatinib, can overcome lapatinib resistance. Our study not only identified miRNA-221 as a pivotal factor conferring the acquired resistance of HER2-positive breast cancer cells to lapatinib through negatively regulating p27kip1 expression, but also suggested Src inhibition as a potential strategy to overcome lapatinib resistance.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Lapatinib/farmacologia , MicroRNAs/metabolismo , Receptor ErbB-2/antagonistas & inibidores , Animais , Neoplasias da Mama/química , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p27/efeitos dos fármacos , Dasatinibe/farmacologia , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Proteína Forkhead Box O3/metabolismo , Fator 3-gama Nuclear de Hepatócito/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/efeitos dos fármacos , Análise em Microsséries , Subunidade p50 de NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação para Cima/efeitos dos fármacos , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
11.
Helicobacter ; 26(3): e12806, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33843101

RESUMO

BACKGROUND: Eradication of Helicobacter pylori infection is the most direct and effective way for preventing gastric cancer. Lactic acid bacteria are considered as alternative therapeutic agents against H. pylori infection. METHODS: Effects of Lactobacillus rhamnosus JB3 (LR-JB3) on the virulence gene expression of H. pylori and infection-induced cellular responses of AGS cells were investigated by co-cultivating infected AGS cells with different multiplicity of infections (MOIs) of LR-JB3. RESULTS: LR-JB3, specifically at a MOI of 25, suppressed the association ability of H. pylori and its induced IL-8 levels, as well as the mRNA levels of vacA, sabA, and fucT of H. pylori, infection-induced Lewis (Le)x antigen and Toll-like receptor 4 (TLR4) expressions in AGS cells. However, the apoptosis mediated by infection was inhibited by LR-JB3 in a dose-dependent manner. In addition, autoinducer (AI)-2 was observed to have increased the association ability and fucT expression of H. pylori, and Lex antigen and TLR4 expression of AGS cells. Interestingly, an unknown bioactive cue was hypothesized to have been secreted from LR-JB3 at a MOI of 25 to act as an antagonist of AI-2. CONCLUSIONS: LR-JB3 possesses various means to interfere with H. pylori pathogenesis and infection-induced cellular responses of AGS cells to fight against infection.


Assuntos
Antibiose , Helicobacter pylori , Lacticaseibacillus rhamnosus , Apoptose , Linhagem Celular Tumoral , Células Epiteliais , Mucosa Gástrica , Infecções por Helicobacter , Helicobacter pylori/patogenicidade , Humanos , Lacticaseibacillus rhamnosus/fisiologia
12.
Org Biomol Chem ; 19(18): 4126-4131, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33870388

RESUMO

1,2-Dihydroxanthones (DHXs) are core structures of natural products and useful building blocks in organic synthesis. So far, they have been less studied. In this report, a mild, efficient and green method for the synthesis of 1,2-dihydroxanthones has been developed in one pot through Claisen condensation and O-cyclization under waste-induced relay catalysis with minimum organic solvents. The by-product (HMDS or NH3·H2O) of the first step turned out to be the promoter for the second step, which could efficiently proceed in aqueous media without the addition of other catalysts. The reactions using trifluoroethyl salicylates could be performed under mild conditions to ensure the generation of vulnerable DHXs in high yields. The substrate scope is very broad regardless of the substituent type and its position on the structure. Specifically, the versatility of DHXs was demonstrated by their conversion to xanthones and other complex structures.

13.
J Formos Med Assoc ; 120(1 Pt 2): 515-523, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32624316

RESUMO

BACKGROUND/PURPOSE: Cisplatin-resistant oral cancer is clinically difficult to manage and the dose-dependent toxicities of cisplatin has been widely concerned. Allyl isothiocyanate (AITC), known as mustard oil, is a plant-derived compound abundant in cruciferous vegetables. It is reported to have anti-cancer potential as a natural dietary chemopreventive compound against a variety of cancers, but the effect of AITC on cisplatin-resistant cancer cells is still little-known. METHODS: Human CAL27-cisplatin-resistant oral cancer cells (CAR cells) were examined to investigate the antitumor properties of AITC. 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay, IncuCyte™ S3 cell proliferation assay, 4',6-diamidino-2-phenylindole (DAPI) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining as well as Western blot analysis were deployed. RESULTS: AITC decreased CAR cell viability, induced cell death of CAR cells and inhibited the confluences of cultured CAR cells. When CAR cells were treated with AITC, activation of caspase-3 and caspase-9 by AITC was observed and could be reversed by Z-VAD-fmk (pan-caspase inhibitor). Furthermore, the protein expressions of phosphorylated protein kinase B (p-AKT) and phosphorylated mammalian target of rapamycin (p-mTOR) were suppressed in AITC-treated CAR cells, whereas protein expressions of Bax, cytochrome c, Apaf-1, cleaved caspase-3, and cleaved caspase-9 were upregulated in AITC-treated CAR cells. CONCLUSION: AITC can inhibit Akt/mTOR proliferation signaling and promote mitochondria-dependent apoptotic pathway through AITC-enhanced activities of caspase-3 and caspase-9 in CAR cells.


Assuntos
Neoplasias Bucais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Humanos , Isotiocianatos , Neoplasias Bucais/tratamento farmacológico
14.
Molecules ; 26(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34577044

RESUMO

Xanthones are secondary metabolites found in plants, fungi, lichens, and bacteria from a variety of families and genera, with the majority found in the Gentianaceae, Polygalaceae, and Clusiaceae. They have a diverse range of bioactivities, including anti-oxidant, anti-bacterial, anti-malarial, anti-tuberculosis, and cytotoxic properties. Xanthone glucosides are a significant branch of xanthones. After glycosylation, xanthones may have improved characteristics (such as solubility and pharmacological activity). Currently, no critical review of xanthone glucosides has been published. A literature survey including reports of naturally occurring xanthone glucosides is included in this review. The isolation, structure, bioactivity, and synthesis of these compounds were all explored in depth.


Assuntos
Glucosídeos , Xantonas , Humanos
15.
Molecules ; 26(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34684870

RESUMO

Herpesviruses establish long-term latent infection for the life of the host and are known to cause numerous diseases. The prevalence of viral infection is significantly increased and causes a worldwide challenge in terms of health issues due to drug resistance. Prolonged treatment with conventional antiviral drugs is more likely to develop drug-resistant strains due to mutations of thymidine nucleoside kinase or DNA polymerase. Hence, the development of alternative treatments is clearly required. Natural products and their derivatives have played a significant role in treating herpesvirus infection rather than nucleoside analogs in drug-resistant strains with minimal undesirable effects and different mechanisms of action. Numerous plants, animals, fungi, and bacteria-derived compounds have been proved to be efficient and safe for treating human herpesvirus infection. This review covers the natural antiherpetic agents with the chemical structural class of alkaloids, flavonoids, terpenoids, polyphenols, anthraquinones, anthracyclines, and miscellaneous compounds, and their antiviral mechanisms have been summarized. This review would be helpful to get a better grasp of anti-herpesvirus activity of natural products and their derivatives, and to evaluate the feasibility of natural compounds as an alternative therapy against herpesvirus infections in humans.


Assuntos
Antivirais/farmacologia , Produtos Biológicos/farmacologia , Infecções por Herpesviridae/tratamento farmacológico , Herpesviridae/efeitos dos fármacos , Animais , Produtos Biológicos/química , Farmacorresistência Viral , Herpesviridae/isolamento & purificação , Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Humanos
16.
Anal Bioanal Chem ; 412(11): 2579-2587, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32076790

RESUMO

A series of Ru(II)-containing metallopolymers with different polypyridyl complexes, namely [Ru(N^N)2(L)](PF6)2 (L = bipyridine-branched polymer; N^N = bpy: 2,2'-bipyridine (Ru 1); phen: 1,10-phenanthroline (Ru 2); dpp: 4,7-diphenyl-1,10-phenanthroline (Ru 3)), were synthesized with the motive that adjusting π-conjugation length of ligands might produce competent luminescent oxygen probes. The three hydrophobic metallopolymers were studied with 1H NMR, UV-Vis absorption, and emission spectroscopy, and then were utilized to prepare biocompatible nanoparticles (NPs) via a nanoprecipitation method. Luminescent properties of the NPs were investigated against dissolved oxygen by steady-state and time-resolved spectroscopy respectively. Luminescence quenching of the three NPs all followed a linear behavior in the range of 0-43 ppm (oxygen concentration), but Ru 3-NPs exhibited the highest oxygen sensitivity (82%) and longest emission wavelength (λex = 460 nm; λem = 617 nm). In addition, external interferons from cellular environments (e.g., pH, temperature, and proteins) had been studied on Ru 3-NPs. Finally, dissolved oxygen in monolayer cells under normoxic/hypoxic conditions was clearly differentiated by using Ru 3-NPs as the luminescent sensor, and, more importantly, hypoxia within multicellular tumor spheroids was vividly imaged. These results suggest that such Ru(II)-containing metallopolymers are strong candidates for luminescent nanosensors towards hypoxia. Graphical abstract.


Assuntos
Substâncias Luminescentes/química , Oxigênio/análise , Rutênio/química , Hipóxia Tumoral , 2,2'-Dipiridil/química , Células HeLa , Humanos , Ligantes , Luminescência , Medições Luminescentes/métodos , Fenantrolinas/química
17.
J Environ Manage ; 253: 109693, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31666213

RESUMO

The construction sector is a critical part in achieving energy conservation targets in China, as it accounts for approximately 30% of the annual national energy supply for building construction. Therefore, this study integrates multi-regional input-output analysis and ecological network analysis to track energy fluxes and pathways from the construction sector, aiming to facilitate the configuration of the energy-flow structure and improve understanding of the region's responsibilities. Results of a spatial distribution analysis show that the eastern area of China leads in fossil energy consumption (e.g., coal and crude oil), whereas western China is the largest consumer of natural gas. Spatial relationship analyss indicate that eastern areas are located at the top of the trophic structure, implying that these regions are prioritized in energy consumption over the surrounding regions. By contrast, most regions located in the northern parts of China are characterized by resource-abundant areas and are at the bottom of the trophic structure, thereby indicating their comparatively weak role in an exploitation relationship. An investigation of major metropolitan areas demonstrates that mandatory targets set by national instruments are stratified in accordance with their diverse role and status in energy consumption at the beginning of the 12th Five-Year Plan period. However, these targets remain insignificant in the context of the inner area.


Assuntos
Carvão Mineral , Petróleo , China , Gás Natural
18.
Biosci Biotechnol Biochem ; 83(9): 1729-1739, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31010399

RESUMO

Lupeol, one of the common components from the fruits and natural foods, has been reported to exert antitumor activities in many human cancer cell lines; however, its effects on osteosarcoma cell metastasis were not elucidated. In the present study, lupeol at 10-25 µM induced cell morphological changes and decreased total viable cell number in U-2 OS cells. Lupeol (5-15 µM) suppressed cell mobility, migration, and invasion by wound healing and transwell chamber assays, respectively. Lupeol inhibited the activities of MMP-2 and -9 in U-2 OS cells by gelatin zymography assay. Lupeol significantly decreased PI3K, pAKT, ß-catenin, and increased GSK3ß. Furthermore, lupeol decreased the expressions of Ras, p-Raf-1, p-p38, and ß-catenin. Lupeol also decreased uPA, MMP-2, MMP-9, and N-cadherin but increased VE-cadherin in U-2 OS cells. Based on these observations, we suggest that lupeol can be used in anti-metastasis of human osteosarcoma cells in the future.


Assuntos
Neoplasias Ósseas/patologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Invasividade Neoplásica/prevenção & controle , Metástase Neoplásica/prevenção & controle , Osteossarcoma/patologia , Triterpenos Pentacíclicos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Neoplasias Ósseas/enzimologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Metaloproteinases da Matriz/metabolismo , Osteossarcoma/enzimologia
19.
Biosci Biotechnol Biochem ; 83(10): 1912-1923, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31187696

RESUMO

Cantharidin (CTD), a sesquiterpenoid bioactive substance, has been reported to exhibit anticancer activity against various types of cancer cells. The aim of the present study was to investigate the apoptosis effects and the underlying mechanisms of CTD on osteosarcoma U-2 OS cells. Results showed that CTD induced cell morphologic changes, reduced total viable cells, induced DNA damage, and G2/M phase arrest. CTD increased the production of reactive oxygen species and Ca2+, and elevated the activities of caspase-3 and -9, but decreased the level of mitochondrial membrane potential. Furthermore, CTD increased the ROS- and ER stress-associated protein expressions and increased the levels of pro-apoptosis-associated proteins, but decreased that of anti-apoptosis-associated proteins. Based on these observations, we suggested that CTD decreased cell number through G2/M phase arrest and the induction of cell apoptosis in U-2 OS cells and CTD could be a potential candidate for osteosarcoma treatments.


Assuntos
Apoptose/efeitos dos fármacos , Cantaridina/farmacologia , Divisão Celular/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Osteossarcoma/patologia , Cálcio/metabolismo , Caspases/metabolismo , Linhagem Celular Tumoral , Cromatina/efeitos dos fármacos , Cromatina/metabolismo , Dano ao DNA , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Osteossarcoma/enzimologia , Osteossarcoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA