Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 833
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(24): 9866-9875, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38835317

RESUMO

Herein, a dual self-protected DNAzyme-based 3D DNA walker (dSPD walker), composed of activated dual self-protected walking particles (ac-dSPWPs) and track particles (TPs), was constructed for ultrasensitive and ultrahigh-speed fluorescence detection and imaging of microRNAs (miRNAs) in living cells. Impressively, compared with the defect that "one" target miRNA only initiates "one" walking arm of the conventional single self-protected DNAzyme walker, the dSPD walker benefits from the secondary amplification and spatial confinement effect and could guide "one" target miRNA to generate "n" secondary targets, thereby initiating "n" nearby walking strands immediately, realizing the initial rate over one-magnitude-order faster than that of the conventional one. Moreover, in the process of relative motion between ac-dSPWPs and TPs, the ac-dSPWPs could cleave multiple substrate strands simultaneously to speed up movement and reduce the derailment rate, as well as combine with successive TPs to facilitate a large amount of continuous signal accumulation, achieving an ultrafast detection of miRNA-221 within 10 min in vitro and high sensitivity with a low detection limit of 0.84 pM. In addition, the DNA nanospheres obtained by the rolling circle amplification reaction can capture the Cy5 fluorescence dispersed in liquids, which achieves the high-contrast imaging of miRNA-221, resulting in further ultrasensitive imaging of miRNA-221 in cancer cells. The proposed strategy has made a bold innovation in the rapid and sensitive detection as well as intracellular imaging of low-abundance biomarkers, offering promising application in early diagnosis and relevant research of cancer and tumors.


Assuntos
DNA Catalítico , MicroRNAs , MicroRNAs/análise , Humanos , DNA Catalítico/química , DNA Catalítico/metabolismo , Imagem Óptica , Limite de Detecção , DNA/química , Espectrometria de Fluorescência , Corantes Fluorescentes/química , Fluorescência , Células HeLa
2.
Anal Chem ; 96(4): 1427-1435, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38226591

RESUMO

Although porphyrins make up a promising class of electrochemiluminescence (ECL) luminophors, their aggregation-caused quenching (ACQ) characteristics lead to inferior ECL efficiency (ΦECL). Furthermore, current application of porphyrins is limited to cathodic emission. This work creatively exploited a cage-like porous complex (referred to as SWU-1) as the microreactor to recede the ACQ effect while modulating dual ECL emission of meso-tetra(4-carboxyphenyl)porphine (TCPP), which self-assembled with SWU-1 to form TCPP@SWU-1 nanocapsules (TCPP@SWU-1 NCs). As the microreactor, SWU-1 not only effectively constrained TCPP aggregation to improve electron-hole recombination efficiency but also improved stability of anion and cation radicals, thus significantly enhancing the dual emission of TCPP. Compared with TCPP aggregates, the resulting TCPP@SWU-1 NCs exhibited significantly enhanced anodic and cathodic emission, and their ΦECL was increased by 8.7-fold and 3.9-fold, respectively. Furthermore, black hole quencher-2 (BHQ2) can simultaneously quench anodic and cathodic signals. TCPP@SWU-1 NCs coupling BHQ2 conveniently achieved an ECL ratio detection of miRNA-126, and the limit of detection (S/N = 3) was 4.1 aM. This work pioneered the development of the cage-like porous complex SWU-1 as the microreactor to alleviate defects of the ACQ effect and mediate dual emission of TCPP. The coupling of dual-emitting TCPP@SWU-1 NCs and dual-function moderator BHQ2 created a novel single-luminophor-based ratio system for bioanalysis and provided a promising ECL analysis approach for miRNA-126.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Porfirinas , Porosidade , Fotometria , Medições Luminescentes/métodos , Técnicas Eletroquímicas/métodos
3.
Anal Chem ; 96(4): 1651-1658, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38239061

RESUMO

The development of a highly accurate electrochemiluminescence (ECL) signal switch to avoid nonspecific stimulus responses is currently a significant and challenging task. Here, we constructed a universal signal switch utilizing a luminophore-quencher pair of mesostructured silica xerogel-confined polymer and gold nanoparticles (Au NPs) that can accurately detect low-abundance epigenetic markers in complex sample systems. Notably, the ECL polymer encapsulated in mesostructured silica xerogel acts as a luminophore, which demonstrated a highly specific dependence on the Au NPs-mediated energy transfer quenching. To demonstrate the feasibility, we specifically labeled the 5-hydroxymethylcytosine (5hmC) site on the random sequence using a double-stranded (dsDNA) tag that was skillfully designed with the CRISPR/Cas12a activator and recombinant polymerase amplification (RPA) template. After amplification by RPA, a large amount of dsDNA tag was generated as the activator to initiate the trans-cleavage activity of CRISPR/Cas12a and subsequently activate the signal switch, allowing for precise quantification of 5hmC. The ECL signal switch improves the stability of the luminophore and prevents nonspecific stimulus responses, providing a new paradigm for constructing high-precision biosensors.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Polímeros , Ouro , Dióxido de Silício , Medições Luminescentes , Técnicas Eletroquímicas , Epigênese Genética
4.
Anal Chem ; 96(16): 6218-6227, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38598863

RESUMO

Currently reported aggregation-induced electroluminescence (AIECL) is usually based on the electrostatic integration of luminous monomers, and its application is still limited by the low ECL efficiency and poor structural stability of electrostatic integration-based AIECL emitters. Herein, host-guest recognition-mediated supramolecular AIECL was creatively developed to overcome the defects of electrostatic-integration-based AIECL. Cucurbit[8]uril (CB[8]) as the host recognized tris (2-phenylpyridine) iridium(III) [Ir(ppy)3] as the guest to form a novel supramolecular complex Ir-CB[8]. CB[8] can not only provide a large hydrophobic cavity to efficiently load Ir(ppy)3 and enrich coreactant tripropylamine but also utilize its carbonyl-laced portals to form intramolecular hydrogen bonds to stabilize the supramolecular structure, so Ir-CB[8] revealed excellent AIECL performance. The AIECL emitter Ir-CB[8] coupled the efficient DNA walker to construct a sensing system for miRNA-16 detection. Au nanoparticles@norepinephrine (AuNPs@NE) trapped by single-strand S1 was developed to significantly quench the ECL emission of Ir-CB[8]. When the target microRNA-16 (miRNA-16) existed, H1 was opened and the sequential assembly from H2 to H7 was triggered, forming "windmill"-like DNA walker with six Pb2+-dependent leg DNA. The assembled DNA walker, which was centered on DNA structure, had high efficiency and biocompatibility and can cut S1 to keep the DNA fragment-carrying quencher AuNPs@NE away from the electrode surface, thus restoring the ECL emission of Ir-CB[8] and realizing ultrasensitive detection of miRNA-16. Supramolecular AIECL mediated by host-guest recognition provides a new way for constructing AIECL emitters with excellent structural stability and AIECL efficiency, and an Ir-CB[8] coupling "windmill"-like DNA walker builds a promising ECL-sensing system for bioassay.

5.
Anal Chem ; 96(37): 14759-14765, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39234645

RESUMO

Regulating photocurrent polarity is highly attractive for fabricating photoelectrochemical (PEC) biosensors with improved sensitivity and accuracy in practical samples. Here, a new approach that adopts the in situ generated AgI precipitate and AgNCs to reversal Bi2WO6 polarity with formation of Z-type heterojunction was proposed for the first time, which coupled with a high-efficient target conversion strategy of exonuclease III (Exo III)-assisted triple recycling amplification for sensing miRNA-21. The target-related DNA nanospheres in situ generated on electrode with loading of plentiful AgI and AgNCs not only endowed the photocurrent of Bi2WO6 switching from the anodic to cathodic one due to the changes in the electron transfer pathway but also formed AgI/AgNCs/Au/Bi2WO6 Z-type heterojunction to improve the photoelectric conversion efficiency for acquiring extremely enhanced PEC signal, thereby significantly avoiding the problem of high background signal derived from traditional unidirectional increasing/decreasing response and false-positive/false-negative. Experimental data showed that the PEC biosensor had a low detection limit down to 0.085 fM, providing a new polarity-reversal mechanism and expected application in diverse fields, including biomedical research and clinical diagnosis.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , MicroRNAs , Compostos de Prata , MicroRNAs/análise , Compostos de Prata/química , Processos Fotoquímicos , Exodesoxirribonucleases/química , Exodesoxirribonucleases/metabolismo , Limite de Detecção , Humanos , Eletrodos , Iodetos
6.
Anal Chem ; 96(28): 11326-11333, 2024 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-38953527

RESUMO

Herein, the aptamer-antibody sandwich module was first introduced to accurately recognize a low molecular weight compound (mycotoxin). Impressively, compared with the large steric hindrance of a traditional dual-antibody module, the aptamer-antibody sandwich with low Gibbs free energy and a low dissociation constant has high recognition efficiency; thus, it could reduce false positives and false negatives caused by a dual-antibody module. As a proof of concept, a sensitive electrochemiluminescence (ECL) biosensor was constructed for detecting mycotoxin zearalenone (ZEN) based on an aptamer-antibody sandwich as a biological recognition element and porous ZnO nanosheets (Zn NSs) supported Cu nanoclusters (Cu NCs) as the signal transduction element, in which the antibody was modified on the vertex of a tetrahedral DNA nanostructure (TDN) with a rigid structure to increase the kinetics of target recognition for promoting the detection sensitivity. Moreover, the Cu NCs/Zn NSs exhibited an excellent ECL response that was attributed to the aggregation-induced ECL enhancement through electrostatic interactions. The sensing platform achieved trace detection of ZEN with a low detection limit of 0.31 fg/mL, far beyond that of the enzyme-linked immunosorbent assay (ELISA, the current rapid detection method) and high-performance liquid chromatography (HPLC, the national standard detection method). The strategy has great application potential in food analysis, environmental monitoring, and clinical diagnosis.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Zearalenona , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Zearalenona/análise , Zearalenona/imunologia , Técnicas Eletroquímicas/métodos , Cobre/química , Limite de Detecção , Anticorpos/química , Anticorpos/imunologia , Medições Luminescentes/métodos , Óxido de Zinco/química , Peso Molecular
7.
Anal Chem ; 96(28): 11280-11289, 2024 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-38954610

RESUMO

Here, ultrasmall SiO2 nanoparticles (u-SiO2 NPs, <5 nm) with obvious electrochemiluminescence (ECL) phenomenon, which was absent for conventional silica nanoparticles (c-SiO2 NPs), were reported. In a finite ultrasmall volume, the u-SiO2 NPs exhibited increasing ground state energy and higher optical absorption strength due to the electron-hole confinement model and favored catalyzing the reaction through the rapid diffusion of bulk charge, resulting in apparent ECL emission. Then, Zn2+-induced u-SiO2 nanoaggregates (Zn/u-SiO2-Ov nAGG) were synthesized and exhibited improved ECL performance via multipath surface state adjustment of u-SiO2 from several aspects, including aggregation-induced ECL, the generation of oxygen vacancy (Ov), and more positive surface charge. In addition, an ECL biosensor was constructed for ultrasensitive human immunodeficiency virus-related deoxyribonucleic acid detection from 100 aM to 1 nM with a low limit of 50.48 aM, combining the ECL luminescence of Zn/u-SiO2-Ov nAGG with three-dimensional DNA nanomachine-mediated multioutput amplification for enhanced accuracy and sensitivity compared to the single-output method. Therefore, exploring the ECL of ultrasmall nanoparticles via the adjustment of size and surface state provided a valuable indication to a wider investigation and application of novel ECL materials for clinical diagnostic.


Assuntos
DNA Viral , Técnicas Eletroquímicas , Medições Luminescentes , Nanopartículas , Dióxido de Silício , Propriedades de Superfície , Dióxido de Silício/química , Nanopartículas/química , Técnicas Eletroquímicas/métodos , Medições Luminescentes/métodos , DNA Viral/análise , Tamanho da Partícula , Técnicas Biossensoriais/métodos , HIV , Humanos , Limite de Detecção
8.
Anal Chem ; 96(26): 10654-10661, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38875020

RESUMO

The trans-cleavage properties of Cas12a make it important for gene editing and disease diagnosis. In this work, the effect of spatial site resistance on the trans-cleavage activity of Cas12a was studied. First, we have explored the cutting effect of Cas12a when different-sized nanoparticles are linked with various spacings of DNA strands using the fluorescence method. The minimum spacing with different-sized nanoparticles that cas12a can cut was determined. We found that when the size of the nanoparticles increases, the minimum spacing that cas12a can cut gradually increases. Subsequently, we verified the conclusion using the surface-enhanced Raman scattering (SERS) method, and at the same time, we designed a SERS biosensor that can achieve ultrasensitive detection of P53 DNA with a linear range of 1 fM-10 nM and a limit of detection of 0.40 fM. Our work develops a deep study of the trans-cleavage activity of Cas12a and gives a guide for DNA design in cas12a-related studies, which can be applied in biomedical analysis and other fields.


Assuntos
Sistemas CRISPR-Cas , DNA , Análise Espectral Raman , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , DNA/química , Humanos , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/química , Proteínas Associadas a CRISPR/metabolismo , Limite de Detecção , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química
9.
Anal Chem ; 96(26): 10738-10747, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38898770

RESUMO

Herein, CsPbBr3 perovskite quantum dots (CPB PQDs)@poly(methyl methacrylate) (PMMA) (CPB@PMMA) nanospheres were used as energy donors with high Förster resonance energy transfer (FRET) efficiency and exceptional biocompatibility for ultrasensitive dynamic imaging of tiny amounts of microRNAs in living cells. Impressively, compared with traditional homogeneous single QDs as energy donors, CPB@PMMA obtained by encapsulating numerous CPB PQDs into PMMA as energy donors could not only significantly increase the efficiency of FRET via improving the local concentration of CPB PQDs but also distinctly avoid the problem of cytotoxicity caused by divulged heavy metal ions entering living cells. Most importantly, in the presence of target miRNA-21, DNA dendrimer-like nanostructures labeled with 6-carboxy-tetramethylrhodamine (TAMRA) were generated by the exposed tether interhybridization of the Y-shape structure, which could wrap around the surface of CPB@PMMA nanospheres to remarkably bridge the distance of FRET and increase the opportunity for effective energy transfer, resulting in excellent precision and accuracy for ultrasensitive and dynamic imaging of miRNAs. As proof of concept, the proposed strategy exhibited ultrahigh sensitivity with a detection limit of 45.3 aM and distinctly distinguished drug-irritative miRNA concentration abnormalities with living cells. Hence, the proposed enzyme-free CPB@PMMA biosensor provides convincing evidence for supplying accurate information, which could be expected to be a powerful tool for bioanalysis, diagnosis, and prognosis of human diseases.


Assuntos
Transferência Ressonante de Energia de Fluorescência , MicroRNAs , Óxidos , Pontos Quânticos , Titânio , Pontos Quânticos/química , MicroRNAs/análise , Humanos , Titânio/química , Óxidos/química , Compostos de Cálcio/química , Polimetil Metacrilato/química , Chumbo/química , Chumbo/análise , Gadolínio/química
10.
Anal Chem ; 96(22): 9097-9103, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38768044

RESUMO

Herein, a fluorescence light-up 3D DNA walker (FLDW) was powered and accelerated by endogenous adenosine-5'-triphosphate (ATP) molecules to construct a biosensor for sensitive and rapid label-free detection and imaging of microRNA-221 (miRNA-221) in malignant tumor cells. Impressively, ATP as the driving force and accelerator for FLDW could significantly accelerate the operation rate of FLDW, reduce the likelihood of errors in signaling, and improve the sensitivity of detection and imaging. When FLDW was initiated by output DNA H1-op transformed by target miRNA-221, G-rich sequences in the S strand, anchored to AuNP, were exposed to form G-quadruplexes (G4s), and thioflavin T (ThT) embedded in the G4s emitted intense fluorescence to realize sensitive and rapid detection of target miRNA-221. Meanwhile, the specific binding of ThT to G4 with a weak background fluorescence response was utilized to enhance the signal-to-noise ratio of the label-free assay straightforwardly and cost-effectively. The proposed FLDW system could realize sensitive detection of the target miRNA-221 in the range of 1 pM to 10 nM with a detection limit of 0.19 pM by employing catalytic hairpin assembly (CHA) to improve the conversion of the target. Furthermore, by harnessing the abundant ATP present in the tumor microenvironment, FLDW achieved rapid and accurate imaging of miRNA-221 in cancer cells. This strategy provides an innovative and high-speed label-free approach for the detection and imaging of biomarkers in cancer cells and is expected to be a powerful tool for bioanalysis, diagnosis, and prognosis of human diseases.


Assuntos
Trifosfato de Adenosina , Técnicas Biossensoriais , DNA , MicroRNAs , MicroRNAs/análise , MicroRNAs/metabolismo , Humanos , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/metabolismo , DNA/química , Técnicas Biossensoriais/métodos , Imagem Óptica , Quadruplex G , Fluorescência , Corantes Fluorescentes/química , Limite de Detecção , Ouro/química
11.
Anal Chem ; 96(8): 3329-3334, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38366976

RESUMO

Simultaneous detection of the concentration variations of microRNA-221 (miRNA-221) and PTEN mRNA molecules in the PI3K/AKT signaling pathway is of significance to elucidate cancer cell migration and invasion, which is useful for cancer diagnosis and therapy. In this work, we show the biodegradable MnO2 nanosheet-assisted and target-triggered DNAzyme recycling signal amplification cascaded approach for the specific detection of the PI3K/AKT signaling pathway in live cells via simultaneous and sensitive monitoring of the variation of intracellular miRNA-221 and PTEN mRNA. Our nanoprobes enable highly sensitive and multiplexed sensing of miRNA-221 and PTEN mRNA with low detection limits of 23.6 and 0.59 pM in vitro, respectively, due to the signal amplification cascades. Importantly, the nanoprobes can be readily delivered into cancer cells and the MnO2 nanosheets can be degraded by intracellular glutathione to release the Mn2+ cofactors to trigger multiple DNAzyme recycling cycles to show highly enhanced fluorescence at different wavelengths to realize sensitive and multiplexed imaging of PTEN mRNA and miRNA-221 for detecting the PI3K/AKT signaling pathway. Moreover, the regulation of PTEN mRNA expression by miRNA-221 upon stimulation by various drugs can also be verified by our method, indicating its promising potentials for both disease diagnosis and drug screening.


Assuntos
DNA Catalítico , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , DNA Catalítico/metabolismo , RNA Mensageiro/genética , Compostos de Manganês , Óxidos , Transdução de Sinais , Proliferação de Células
12.
Anal Chem ; 96(9): 3837-3843, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38384162

RESUMO

Herein, an antibody-protein-aptamer electrochemical biosensor was designed by highly efficient proximity-induced DNA hybridization on a tetrahedral DNA nanostructure (TDN) for ultrasensitive detection of human insulin-like growth factor-1 (IGF-1). Impressively, the IGF-1 antibody immobilized on the top vertex of the TDN could effectively capture the target protein with less steric effect, and the ferrocene-labeled signal probe (SP) bound on the bottom vertex of the TDN was close to the electrode surface for generating a strong initial signal. In the presence of target protein IGF-1 and an aptamer strand, an antibody-protein-aptamer sandwich could be formed on the top vertex of TDN, which would trigger proximity-induced DNA hybridization to release the SP on the bottom vertex of TDN; therefore, the signal response would decrease dramatically, enhancing the sensitivity of the biosensor. As a result, the linear range of the proposed biosensor for target IGF-1 was 1 fM to 1 nM with the limit of detection down to 0.47 fM, which was much lower than that of the traditional TDN designs on electrochemical biosensors. Surprisingly, the use of this approach offered an innovative approach for the sensitive detection of biomarkers and illness diagnosis.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Humanos , Peptídeos Semelhantes à Insulina , Fator de Crescimento Insulin-Like I , DNA/química , Anticorpos , Oligonucleotídeos , Nanoestruturas/química , Técnicas Eletroquímicas , Limite de Detecção
13.
Anal Chem ; 96(33): 13727-13733, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39109530

RESUMO

In this work, an ultrasensitive electrochemiluminescence (ECL) biosensor was constructed based on DNA-stabilized Au Ag nanoclusters (DNA-Au Ag NCs) as the efficient luminophore and Au NPs@Ti3C2 as a new coreaction accelerator for determining microRNA-221 (miRNA-221) related to liver cancer. Impressively, DNA-Au Ag NCs were stabilized by the high affinity of the periodic 3C sequence, exhibiting an excellent ECL efficiency of 27% compared with classical BSA-Au Ag NCs (16%). Moreover, the Au NPs@Ti3C2 nanocomposites, as a new coreaction accelerator, were first introduced to accelerate the production of abundant sulfate free radicals (SO4•-) for promoting the ECL efficiency of DNA-Au Ag NCs in the DNA-Au Ag NCs/Au NPs@Ti3C2/S2O82- ternary system due to the energy band of Au NPs@Ti3C2 being well-matched with the frontier orbital of S2O82-. Furthermore, the trace target (miRNA-221) could drive the rolling circle amplification to generate an amount of output DNA with periodic 3C and 10A sequences. Through covalent bonds on the surface of poly A and Au NPs, the distance between the luminophor and the coreaction accelerator could be narrowed to further enhance the detection sensitivity. As a result, the constructed sensor has been applied for the ultrasensitive detection of miRNA-221 with a low detection limit of 50 aM and successfully monitored miRNA-221 in MHCC-97L and HeLa cell lysates. This strategy could be utilized for guiding the synthesis of light-emitting DNA-metal NCs, which has great potential in the construction of ultrasensitive biosensors for the early diagnosis of diseases.


Assuntos
Técnicas Biossensoriais , DNA , Técnicas Eletroquímicas , Ouro , Medições Luminescentes , Nanopartículas Metálicas , MicroRNAs , Prata , Ouro/química , Técnicas Biossensoriais/métodos , Prata/química , Nanopartículas Metálicas/química , DNA/química , Humanos , Técnicas Eletroquímicas/métodos , MicroRNAs/análise , Titânio/química , Limite de Detecção
14.
Anal Chem ; 96(33): 13644-13651, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39110983

RESUMO

Intracellular detection and imaging of microRNAs (miRNAs) with low expression usually face the problem of unsatisfactory sensitivity. Herein, a novel dual-function DNA nanowire (DDN) with self-feedback amplification and efficient signal transduction was developed for the sensitive detection and intracellular imaging of microRNA-155 (miRNA-155). Target miRNA-155 triggered catalytic hairpin assembly (CHA) to generate plenty of double-stranded DNA (dsDNA), and a trigger primer exposed in dsDNA initiated a hybridization chain reaction (HCR) between four well-designed hairpins to produce DDN, which was encoded with massive target sequences and DNAzyme. On the one hand, target sequences in DDN acted as self-feedback amplifiers to reactivate cascaded CHA and HCR, achieving exponential signal amplification. On the other hand, DNAzyme encoded in DDN acted as signal transducers, successively cleaving Cy5 and BHQ-2 labeled substrate S to obtain a significantly enhanced fluorescence signal. This efficient signal transduction coupling self-feedback amplification greatly improved the detection sensitivity with a limit of detection of 160 aM for miRNA-155, enabling ultrasensitive imaging of low-abundance miRNA-155 in living cells. The constructed DDN creates a promising fluorescence detection and intracellular imaging platform for low-expressed biomarkers, exhibiting tremendous potential in biomedical studies and clinical diagnosis of diseases.


Assuntos
DNA , MicroRNAs , Nanofios , MicroRNAs/análise , MicroRNAs/metabolismo , Nanofios/química , Humanos , DNA/química , DNA Catalítico/química , DNA Catalítico/metabolismo , Transdução de Sinais , Imagem Óptica , Técnicas de Amplificação de Ácido Nucleico , Limite de Detecção
15.
Anal Chem ; 96(33): 13616-13624, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39113553

RESUMO

Herein, the gold nanoclusters/CaFe2O4 nanospheres (Au NCs/CaFe2O4) heterostructure as a novel electrochemiluminescence (ECL) emitter was developed. Excitingly, Au NCs/CaFe2O4 displayed highly efficient and greatly stable ECL based on the newly defined electron-accelerator p-type semiconductor CaFe2O4 NS-induced fast electron transfer; it solved one key obstacle of metal NC-based ECL emitters: sluggish through-covalent bond electron transport kinetics-caused inferior ECL performance. Specifically, on account of the energy level matching between emitter Au NCs and electron-accelerator CaFe2O4 NSs, the valence band (VB) of the electron-accelerator could provide abundant holes for rapidly transporting the electrogenerated electron from the highest occupied molecular orbital (HOMO) of Au NCs to the electrode, generating massive excited species of Au NCs for strong ECL emission. Notably, Au NCs/CaFe2O4 emerged 5.4-fold higher ECL efficiency with 3.5-fold higher electrochemical oxidation current in comparison with pure Au NCs, exhibiting great prospects in extensive lighting installations, ultrasensitive biosensing, and high-resolution ECL imagery. As applications, an ECL bioassay platform was constructed with Au NCs/CaFe2O4 as an emitter and U-like structure-fueled catalytic hairpin assembly (U-CHA) as a signal amplifier for fast and trace analysis of aflatoxin B1 (AFB1) with the detection limit (LOD) down to 2.45 fg/mL, which was 3 orders of magnitude higher than that of the previous ECL biosensors with much better stability. This study developed an entirely new avenue for enlarging the ECL performance of metal NCs, and it is a very attractive orientation for directing the reasonable design of prominent metal NC-based ECL emitters and broadening the practical application of metal NCs.

16.
Anal Chem ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39282891

RESUMO

Herein, CuS colloidal nanocrystals (NCs) with adjustable band gap and good film forming ability have been synthesized as new ECL materials. Furthermore, the band gap and oxygen vacancy (OV) content of CuS NCs are regulated by Al3+ doping, which significantly improves the ECL response of CuS NCs. First, the band gap of CuS-Al NCs decreases after doping with Al3+, which makes it easier for electrons to transition across the band gap. At the same time, the oxygen vacancy of CuS-Al NCs increases, which is conducive to improving the conductivity and promoting charge transfer, thus improving the ECL performance of CuS-Al NCs. Circulating tumor DNA (ctDNA) is an important tumor marker, and its sensitive monitoring is of great significance for tumor diagnosis, treatment, and prognosis detection. Therefore, an ECL biosensor for ultrasensitive detection of circulating tumor DNA (ctDNA) was prepared by using CuS-Al NCs as luminescent material and combining multiple antidromic hybrid chain reaction (anti-HCR) strategy mediated by the target. Compared with the process of target-induced HCR generation, this strategy first forms multiple HCR products and then destroys the already formed HCR products by target-induced destruction, which enhances the sensitivity of target response and improves the reaction efficiency. The constructed biosensor has good detection performance, and the detection limit is as low as 2.74 aM. This work puts forward the luminescence phenomenon of colloidal nanocrystals as new ECL materials, which broadens the application of ECL technology in ultrasensitive biochemical detection.

17.
Anal Chem ; 96(5): 2117-2123, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38268109

RESUMO

Despite the progress that has been made in diverse DNA-based nanodevices to in situ monitor the activity of the DNA repair enzymes in living cells, the significance of improving both the sensitivity and specificity has remained largely neglected and understudied. Herein, we propose a regulatable DNA nanodevice to specifically monitor the activity of DNA repair enzymes for early evaluation of cancer mediated by genomic instability. Concretely, an AND logic gate-regulated DNAzyme nanoflower was rationally designed by the self-assembly of the DNA duplex modified with both apurinic/apyrimidinic (AP) site and methyl lesion site. The DNAzyme nanoflower could be reconfigured under the repair of AP sites and O6-methylguanine sites by apurinic/apyrimidinic endonuclease 1 (APE1) and O6-methylguanine methyltransferase (MGMT) to produce a fluorescent signal, realizing the sensitive monitoring of the activity of APE1 and MGMT. Compared to the free DNAzyme duplex, the fluorescent response of the DNAzyme nanoflower increased by 60%, due to the effective enrichment of the DNA probes by the nanoflower structure. More importantly, we have demonstrated that the dual-enzyme activated strategy allows imaging of specific cancer cells in the AND logic gate manner using MCF-7 as a cancer cell model, improving the specificity of cancer cell imaging. This AND logic gate-regulated multifunctional DNAzyme nanoflower provides a simple tool for simultaneously visualizing multiple DNA repair enzymes, holding great potential in early clinical diagnosis and drug discovery.


Assuntos
Reparo do DNA , DNA Catalítico , Dano ao DNA , Enzimas Reparadoras do DNA/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA/química
18.
Anal Chem ; 96(37): 15066-15073, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39225442

RESUMO

In this work, by ingeniously integrating catalytic hairpin assembly (CHA), double-end Mg2+-dependent DNAzyme, and hybridization chain reaction (HCR) as a triple cascade signal amplifier, an efficient concatenated CHA-DNAzyme-HCR (CDH) system was constructed to develop an ultrasensitive electrochemical biosensor with a low-background signal for the detection of microRNA-221 (miRNA-221). In the presence of the target miRNA-221, the CHA cycle was initiated by reacting with hairpins H1 and H2 to form DNAzyme structure H1-H2, which catalyzed the cleavage of the substrate hairpin H0 to release two output DNAs (output 1 and output 2). Subsequently, the double-loop hairpin H fixed on the electrode plate was opened by the output DNAs, to trigger the HCR with the assistance of hairpins Ha and Hb. Finally, methylene blue was intercalated into the long dsDNA polymer of the HCR product, resulting in a significant electrochemical signal. Surprisingly, the double-loop structure of the hairpin H could prominently reduce the background signal for enhancing the signal-to-noise ratio (S/N). As a proof of concept, an ultrasensitive electrochemical biosensor was developed using the CDH system with a detection limit as low as 9.25 aM, achieving favorable application for the detection of miRNA-221 in various cancer cell lysates. Benefiting from its enzyme-free, label-free, low-background, and highly sensitive characteristics, the CDH system showed widespread application potential for analyzing trace amounts of biomarkers in various clinical research studies.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Técnicas Eletroquímicas , MicroRNAs , MicroRNAs/análise , Técnicas Biossensoriais/métodos , Humanos , DNA Catalítico/química , DNA Catalítico/metabolismo , Hibridização de Ácido Nucleico , Limite de Detecção , Técnicas de Amplificação de Ácido Nucleico
19.
Anal Chem ; 96(26): 10809-10816, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38886176

RESUMO

Ru-based electrochemiluminescence (ECL) coordination polymers are widely employed for bioanalysis and medical diagnosis. However, commonly used Ru-based coordination polymers face the limitation of low efficiency due to the long distance between the ECL reagent and the coreactant dispersed in detecting solution. Herein, we report a dual-ligand self-enhanced ECL coordination polymer, composed of tris(4,4'-dicarboxylic acid-2,2'-bipyridyl) ruthenium(II) dichloride (Ru(dcbpy)32+) as ECL reactant ligand and ethylenediamine (EDA) as corresponding coreactant ligand into Zn2+ metal node, termed Zn-Ru-EDA. Zn-Ru-EDA shows excellent ECL performance which is attributed to the effective intramolecular electron transport between the two ligands. Furthermore, the dual-ligand polymer allows an anodic low excitation potential (+1.09 V) luminescence. The shift in the energy level of the highest occupied molecular orbital (HOMO) upward after the synthesis of the Zn-Ru-EDA has resulted in a reduced excitation potential. The low excitation potential reduced biomolecular damage and the destruction of the modified electrodes. The ECL biosensor has been constructed using Zn-Ru-EDA with high ECL efficiency for the ultrasensitive detection of a bacterial infection and sepsis biomarker, procalcitonin (PCT), in the range from 1.00 × 10-6 to 1.00 × 10 ng·mL-1 with outstanding selectivity, and the detection limit was as low as 0.47 fg·mL-1. Collectively, the dual-ligand-based self-enhanced polymer may provide an ideal strategy for high ECL efficiency improvement as well as designing new self-enhanced multiple-ligand-based coordination in sensitive biomolecular detection for early disease diagnostics.


Assuntos
Técnicas Eletroquímicas , Medições Luminescentes , Polímeros , Pró-Calcitonina , Rutênio , Ligantes , Polímeros/química , Pró-Calcitonina/sangue , Pró-Calcitonina/análise , Humanos , Rutênio/química , Complexos de Coordenação/química , Limite de Detecção , Técnicas Biossensoriais , Etilenodiaminas/química
20.
Anal Chem ; 96(26): 10677-10685, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38889311

RESUMO

Exploring the ability of four-stranded DNA nanorings (fsDNRs) to host multiple nanosilver clusters (NAgCs) for cooperatively amplifiable fluorescence biosensing to a specific initiator (tI*) is fascinating. By designing three DNA single strands and three analogous stem-loop hairpins, we developed a functional fsDNR through sequential cross-opening and overlapped hybridization. Note that a substrate strand (SS) was programmed with six modules: two severed splits (sT and sT') of NAgCs template, two sequestered segments by a middle unpaired spacer, and a partition for tI*-recognizable displacement, while sT and sT' were also tethered in two ends of three hairpins. At first, a triple dsDNA complex with stimulus-responsiveness was formed to guide the specific binding to tI*, while the exposed toehold of the SS activated the forward cascade hybridization of three hairpins, until the ring closure in the tailored self-assembly pathway for forming the fsDNR. The resulting four duplexes forced each pair of sT/sT' to be merged as the parent template in four nicks, guiding the preferential synthesis of four clusters in the shared fsDNR, thereby cooperatively amplifying the green fluorescence signal for sensitive assay of tI*. Meanwhile, the topological conformation of fsDNR can be stabilized by the as-formed cluster adducts to rivet the pair of two splits in the nicks. Benefitting from the self-enhanced effect of multiple emitters, this label-free fluorescent sensing strategy features simplicity, rapidity, and high on-off contrast, without involving complicated nucleic acid amplifiers.


Assuntos
Técnicas Biossensoriais , DNA , Técnicas Biossensoriais/métodos , DNA/química , Prata/química , Nanopartículas Metálicas/química , Hibridização de Ácido Nucleico , Fluorescência , Espectrometria de Fluorescência , Nanotubos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA