Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Neurosci Res ; 96(7): 1159-1175, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29406599

RESUMO

Over the past decade, the simultaneous recording of electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) data has garnered growing interest because it may provide an avenue towards combining the strengths of both imaging modalities. Given their pronounced differences in temporal and spatial statistics, the combination of EEG and fMRI data is however methodologically challenging. Here, we propose a novel screening approach that relies on a Cross Multivariate Correlation Coefficient (xMCC) framework. This approach accomplishes three tasks: (1) It provides a measure for testing multivariate correlation and multivariate uncorrelation of the two modalities; (2) it provides criterion for the selection of EEG features; (3) it performs a screening of relevant EEG information by grouping the EEG channels into clusters to improve efficiency and to reduce computational load when searching for the best predictors of the BOLD signal. The present report applies this approach to a data set with concurrent recordings of steady-state-visual evoked potentials (ssVEPs) and fMRI, recorded while observers viewed phase-reversing Gabor patches. We test the hypothesis that fluctuations in visuo-cortical mass potentials systematically covary with BOLD fluctuations not only in visual cortical, but also in anterior temporal and prefrontal areas. Results supported the hypothesis and showed that the xMCC-based analysis provides straightforward identification of neurophysiological plausible brain regions with EEG-fMRI covariance. Furthermore xMCC converged with other extant methods for EEG-fMRI analysis.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Eletroencefalografia/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Encéfalo/fisiologia , Mapeamento Encefálico/estatística & dados numéricos , Correlação de Dados , Interpretação Estatística de Dados , Eletroencefalografia/estatística & dados numéricos , Potenciais Evocados Visuais , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Interpretação de Imagem Assistida por Computador/estatística & dados numéricos , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Masculino , Imagem Multimodal/métodos , Imagem Multimodal/estatística & dados numéricos , Análise Multivariada
2.
Front Neurosci ; 17: 1247315, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37746136

RESUMO

This paper investigates the selection of voxels for functional Magnetic Resonance Imaging (fMRI) brain data. We aim to identify a comprehensive set of discriminative voxels associated with human learning when exposed to a neutral visual stimulus that predicts an aversive outcome. However, due to the nature of the unconditioned stimuli (typically a noxious stimulus), it is challenging to obtain sufficient sample sizes for psychological experiments, given the tolerability of the subjects and ethical considerations. We propose a stable hierarchical voting (SHV) mechanism based on stability selection to address this challenge. This mechanism enables us to evaluate the quality of spatial random sampling and minimizes the risk of false and missed detections. We assess the performance of the proposed algorithm using simulated and publicly available datasets. The experiments demonstrate that the regularization strategy choice significantly affects the results' interpretability. When applying our algorithm to our collected fMRI dataset, it successfully identifies sparse and closely related patterns across subjects and displays stable weight maps for three experimental phases under the fear conditioning paradigm. These findings strongly support the causal role of aversive conditioning in altering visual-cortical activity.

3.
J Neurosci Methods ; 399: 109980, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37783351

RESUMO

BACKGROUND: The brain aggregates meaningless local sensory elements to form meaningful global patterns in a process called perceptual grouping. Current brain imaging studies have found that neural activities in V1 are modulated during visual grouping. However, how grouping is represented in each of the early visual areas, and how attention alters these representations, is still unknown. NEW METHOD: We adopted MVPA to decode the specific content of perceptual grouping by comparing neural activity patterns between gratings and dot lattice stimuli which can be grouped with proximity law. Furthermore, we quantified the grouping effect by defining the strength of grouping, and assessed the effect of attention on grouping. RESULTS: We found that activity patterns to proximity grouped stimuli in early visual areas resemble these to grating stimuli with the same orientations. This similarity exists even when there is no attention focused on the stimuli. The results also showed a progressive increase of representational strength of grouping from V1 to V3, and attention modulation to grouping is only significant in V3 among all the visual areas. COMPARISON WITH EXISTING METHODS: Most of the previous work on perceptual grouping has focused on how activity amplitudes are modulated by grouping. Using MVPA, the present work successfully decoded the contents of neural activity patterns corresponding to proximity grouping stimuli, thus shed light on the availability of content-decoding approach in the research on perceptual grouping. CONCLUSIONS: Our work found that the content of the neural activity patterns during perceptual grouping can be decoded in the early visual areas under both attended and unattended task, and provide novel evidence that there is a cascade processing for proximity grouping through V1 to V3. The strength of grouping was larger in V3 than in any other visual areas, and the attention modulation to the strength of grouping was only significant in V3 among all the visual areas, implying that V3 plays an important role in proximity grouping.


Assuntos
Atenção , Córtex Visual , Humanos , Encéfalo , Mapeamento Encefálico , Estimulação Luminosa , Percepção Visual
4.
IEEE Trans Cybern ; 52(12): 13500-13511, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34550898

RESUMO

As a novel similarity measure that is defined as the expectation of a kernel function between two random variables, correntropy has been successfully applied in robust machine learning and signal processing to combat large outliers. The kernel function in correntropy is usually a zero-mean Gaussian kernel. In a recent work, the concept of mixture correntropy (MC) was proposed to improve the learning performance, where the kernel function is a mixture Gaussian kernel, namely, a linear combination of several zero-mean Gaussian kernels with different widths. In both correntropy and MC, the center of the kernel function is, however, always located at zero. In the present work, to further improve the learning performance, we propose the concept of multikernel correntropy (MKC), in which each component of the mixture Gaussian kernel can be centered at a different location. The properties of the MKC are investigated and an efficient approach is proposed to determine the free parameters in MKC. Experimental results show that the learning algorithms under the maximum MKC criterion (MMKCC) can outperform those under the original maximum correntropy criterion (MCC) and the maximum MC criterion (MMCC).


Assuntos
Algoritmos , Processamento de Sinais Assistido por Computador , Aprendizado de Máquina
5.
Artigo em Inglês | MEDLINE | ID: mdl-31567086

RESUMO

Pedestrian detection with high detection and localization accuracy is increasingly important for many practical applications. Due to the flexible structure of the human body, it is hard to train a template-based pedestrian detector that achieves a high detection rate and a good localization accuracy simultaneously. In this paper, we utilize human pose estimation to improve the detection and localization accuracy of pedestrian detection. We design two kinds of pose-indexed features that can considerably improve the discriminability of the detector. In addition to employing a two-stage pipeline to carry out these two tasks, we unify pose estimation and pedestrian detection into a cascaded decision forest in which they can cooperate sufficiently. To prevent irregular positive examples, such as truncated ones, from distracting the pedestrian detection and the pose regression, we clean the positive training data by realigning the bounding boxes and rejecting the wrong positive samples. Experimental results on the Caltech test dataset demonstrate the effectiveness of our proposed method. Our detector achieves 11.1% MR-2, outperforming all existing detectors without using the convolutional neural network (CNN). Moreover, our method can be assembled with other detectors based on CNNs to improve detection and localization performance. By collaborating with the recent CNN-based method, our detector achieves 5.5% MR-2 on the Caltech test dataset, outperforming the state-of-the-art methods.

6.
Front Neurorobot ; 13: 24, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156419

RESUMO

Neurorobotics is one of the most ambitious fields in robotics, driving integration of interdisciplinary data and knowledge. One of the most productive areas of interdisciplinary research in this area has been the implementation of biologically-inspired mechanisms in the development of autonomous systems. Specifically, enabling such systems to display adaptive behavior such as learning from good and bad outcomes, has been achieved by quantifying and understanding the neural mechanisms of the brain networks mediating adaptive behaviors in humans and animals. For example, associative learning from aversive or dangerous outcomes is crucial for an autonomous system, to avoid dangerous situations in the future. A body of neuroscience research has suggested that the neurocomputations in the human brain during associative learning involve re-shaping of sensory responses. The nature of these adaptive changes in sensory processing during learning however are not yet well enough understood to be readily implemented into on-board algorithms for robotics application. Toward this overall goal, we record the simultaneous electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI), characterizing one candidate mechanism, i.e., large-scale brain oscillations. The present report examines the use of Functional Source Separation (FSS) as an optimization step in EEG-fMRI fusion that harnesses timing information to constrain the solutions that satisfy physiological assumptions. We applied this approach to the voxel-wise correlation of steady-state visual evoked potential (ssVEP) amplitude and blood oxygen level-dependent imaging (BOLD), across both time series. The results showed the benefit of FSS for the extraction of robust ssVEP signals during simultaneous EEG-fMRI recordings. Applied to data from a 3-phase aversive conditioning paradigm, the correlation maps across the three phases (habituation, acquisition, extinction) show converging results, notably major overlapping areas in both primary and extended visual cortical regions, including calcarine sulcus, lingual cortex, and cuneus. In addition, during the acquisition phase when aversive learning occurs, we observed additional correlations between ssVEP and BOLD in the anterior cingulate cortex (ACC) as well as the precuneus and superior temporal gyrus.

7.
IEEE Trans Pattern Anal Mach Intell ; 39(1): 141-155, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26978554

RESUMO

We present the multi-timescale collaborative tracker for single object tracking. The tracker simultaneously utilizes different types of "forces", namely attraction, repulsion and support, to take advantage of their complementary strengths. We model the three forces via three components that are learned from the sample sets with different timescales. The long-term descriptive component attracts the target sample, while the medium-term discriminative component repulses the target from the background. They are collaborated in the appearance model to benefit each other. The short-term regressive component combines the votes of the auxiliary samples to predict the target's position, forming the context-aware motion model. The appearance model and the motion model collaboratively determine the target state, and the optimal state is estimated by a novel coarse-to-fine search strategy. We have conducted an extensive set of experiments on the standard 50 video benchmark. The results confirm the effectiveness of each component and their collaboration, outperforming current state-of-the-art methods.

8.
IEEE Trans Pattern Anal Mach Intell ; 33(2): 353-67, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21193811

RESUMO

In this paper, we study the salient object detection problem for images. We formulate this problem as a binary labeling task where we separate the salient object from the background. We propose a set of novel features, including multiscale contrast, center-surround histogram, and color spatial distribution, to describe a salient object locally, regionally, and globally. A conditional random field is learned to effectively combine these features for salient object detection. Further, we extend the proposed approach to detect a salient object from sequential images by introducing the dynamic salient features. We collected a large image database containing tens of thousands of carefully labeled images by multiple users and a video segment database, and conducted a set of experiments over them to demonstrate the effectiveness of the proposed approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA