Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(11): e2316032121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38451945

RESUMO

Nitrogen-vacancy (NV) centers in diamond are a promising platform for nanoscale NMR sensing. Despite significant progress toward using NV centers to detect and localize nuclear spins down to the single spin level, NV-based spectroscopy of individual, intact, arbitrary target molecules remains elusive. Such sensing requires that target molecules are immobilized within nanometers of NV centers with long spin coherence. The inert nature of diamond typically requires harsh functionalization techniques such as thermal annealing or plasma processing, limiting the scope of functional groups that can be attached to the surface. Solution-phase chemical methods can be readily generalized to install diverse functional groups, but they have not been widely explored for single-crystal diamond surfaces. Moreover, realizing shallow NV centers with long spin coherence times requires highly ordered single-crystal surfaces, and solution-phase functionalization has not yet been shown with such demanding conditions. In this work, we report a versatile strategy to directly functionalize C-H bonds on single-crystal diamond surfaces under ambient conditions using visible light, forming C-F, C-Cl, C-S, and C-N bonds at the surface. This method is compatible with NV centers within 10 nm of the surface with spin coherence times comparable to the state of the art. As a proof-of-principle demonstration, we use shallow ensembles of NV centers to detect nuclear spins from surface-bound functional groups. Our approach to surface functionalization opens the door to deploying NV centers as a tool for chemical sensing and single-molecule spectroscopy.

2.
J Transl Med ; 22(1): 410, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689269

RESUMO

BACKGROUND: Droplet digital PCR (ddPCR) is widely applied to monitor measurable residual disease (MRD). However, there are limited studies on the feasibility of ddPCR-MRD monitoring after allogeneic hematopoietic stem cell transplantation (allo-HSCT), especially targeting multiple molecular markers simultaneously. METHODS: Our study collected samples from patients with acute myeloid leukemia (AML) or high-risk myelodysplastic syndrome (MDS) in complete remission after allo-HSCT between January 2018 and August 2021 to evaluate whether posttransplant ddPCR-MRD monitoring can identify patients at high risk of relapse. RESULTS: Of 152 patients, 58 (38.2%) were MRD positive by ddPCR within 4 months posttransplant, with a median variant allele frequency of 0.198%. The detectable DTA mutations (DNMT3A, TET2, and ASXL1 mutations) after allo-HSCT were not associated with an increased risk of relapse. After excluding DTA mutations, patients with ddPCR-MRD positivity had a significantly higher cumulative incidence of relapse (CIR, 38.7% vs. 9.7%, P < 0.001) and lower rates of relapse-free survival (RFS, 55.5% vs. 83.7%, P < 0.001) and overall survival (OS, 60.5% vs. 90.5%, P < 0.001). In multivariate analysis, ddPCR-MRD positivity of non-DTA genes was an independent adverse predictor for CIR (hazard ratio [HR], 4.02; P < 0.001), RFS (HR, 2.92; P = 0.002) and OS (HR, 3.12; P = 0.007). Moreover, the combination of ddPCR with multiparameter flow cytometry (MFC) can further accurately identify patients at high risk of relapse (F+/M+, HR, 22.44; P < 0.001, F+/M-, HR, 12.46; P < 0.001 and F-/M+, HR, 4.51; P = 0.003). CONCLUSION: ddPCR-MRD is a feasible approach to predict relapse after allo-HSCT in AML/MDS patients with non-DTA genes and is more accurate when combined with MFC. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT06000306. Registered 17 August 2023 -Retrospectively registered ( https://clinicaltrials.gov/study/NCT06000306?term=NCT06000306&rank=1 ).


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Neoplasia Residual , Recidiva , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Estudos Retrospectivos , Síndromes Mielodisplásicas/terapia , Síndromes Mielodisplásicas/genética , Reação em Cadeia da Polimerase , Adulto Jovem , Adolescente , Idoso , Mutação/genética
3.
Plant Physiol ; 186(1): 469-482, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33570603

RESUMO

Seed storability largely determines the vigor of seeds during storage and is significant in agriculture and ecology. However, the underlying genetic basis remains unclear. In the present study, we report the cloning and characterization of the rice (Oryza sativa) indole-3-acetic acid (IAA)-amido synthetase gene GRETCHEN HAGEN3-2 (OsGH3-2) associated with seed storability. OsGH3-2 was identified by performing a genome-wide association study in rice germplasms with linkage mapping in chromosome substitution segment lines, contributing to the wide variation of seed viability in the populations after long periods of storage and artificial ageing. OsGH3-2 was dominantly expressed in the developing seeds and catalyzed IAA conjugation to amino acids, forming inactive auxin. Transgenic overexpression, knockout, and knockdown experiments demonstrated that OsGH3-2 affected seed storability by regulating the accumulation level of abscisic acid (ABA). Overexpression of OsGH3-2 significantly decreased seed storability, while knockout or knockdown of the gene enhanced seed storability compared with the wild-type. OsGH3-2 acted as a negative regulator of seed storability by modulating many genes related to the ABA pathway and probably subsequently late embryogenesis-abundant proteins at the transcription level. These findings shed light on the molecular mechanisms underlying seed storability and will facilitate the improvement of seed vigor by genomic breeding and gene-editing approaches in rice.


Assuntos
Ácido Abscísico/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Sementes/química
4.
Plant Physiol ; 178(2): 612-625, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30139795

RESUMO

Metabolomic analysis coupled with advanced genetic populations represents a powerful tool with which to investigate the plant metabolome. However, genetic analyses of the rice (Oryza sativa) metabolome have been conducted mainly using natural accessions or a single biparental population. Here, the flag leaves from three interconnected chromosome segment substitution line populations with a common recurrent genetic background were used to dissect rice metabolic diversity. We effectively used multiple interconnected biparental populations, constructed by introducing genomic segments into Zhenshan 97 from ACC10 (A/Z), Minghui 63 (M/Z), and Nipponbare (N/Z), to map metabolic quantitative trait loci (mQTL). A total of 1,587 mQTL were generated, of which 684, 479, and 722 were obtained from the A/Z, M/Z, and N/Z chromosome segment substitution line populations, respectively, and we designated 99 candidate genes for 367 mQTL. In addition, 1,001 mQTL were generated specifically from joint linkage analysis with 25 candidate genes assigned. Several of these candidates were validated, such as LOC_Os07g01020 for the in vivo content of pyridoxine and its derivative and LOC_Os04g25980 for cis-zeatin glucosyltransferase activity. We propose a novel biosynthetic pathway for O-methylapigenin C-pentoside and demonstrated that LOC_Os04g11970 encodes a component of this pathway through fine-mapping. We postulate that the methylated apigenin may confer plant disease resistance. This study demonstrates the power of using multiple interconnected populations to generate a large number of veritable mQTL. The combined results are discussed in the context of functional metabolomics and the possible features of assigned candidates underlying respective metabolites.


Assuntos
Cromossomos de Plantas/genética , Metaboloma , Oryza/genética , Oryza/metabolismo , Locos de Características Quantitativas/genética , Ligação Genética , Genética Populacional , Metabolômica , Folhas de Planta/genética , Folhas de Planta/metabolismo
5.
Int J Mol Sci ; 20(18)2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31505900

RESUMO

Seed storability, defined as the ability to remain alive during storage, is an important agronomic and physiological characteristic, but the underlying genetic mechanism remains largely unclear. Here, we report quantitative trait loci (QTLs) analyses for seed storability using a high-density single nucleotide polymorphism linkage map in the backcross recombinant inbred lines that was derived from a cross of a japonica cultivar, Nipponbare, and an indica cultivar, 9311. Seven putative QTLs were identified for seed storability under natural storage, each explaining 3.6-9.0% of the phenotypic variation in this population. Among these QTLs, qSS1 with the 9311 alleles promoting seed storability was further validated in near-isogenic line and its derived-F2 population. The other locus (qSS3.1) for seed storability colocalized with a locus for germination ability under hydrogen peroxide, which is recognized as an oxidant molecule that causes lipid damage. Transgenic experiments validated that a candidate gene (OsFAH2) resides the qSS3.1 region controlling seed storability and antioxidant capability. Overexpression of OsFAH2 that encodes a fatty acid hydroxylase reduced lipid preoxidation and increased seed storability. These findings provide new insights into the genetic and physiological bases of seed storability and will be useful for the improvement of seed storability in rice.


Assuntos
Antioxidantes , Genes de Plantas , Oryza/genética , Característica Quantitativa Herdável , Sementes/genética , Peroxidação de Lipídeos/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Oryza/metabolismo , Polimorfismo de Nucleotídeo Único , Sementes/metabolismo
6.
Plants (Basel) ; 13(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276765

RESUMO

Seed deterioration during storage poses a significant challenge to rice production, leading to a drastic decline in both edible quality and viability, thereby impacting overall crop yield. This study aimed to address this issue by further investigating candidate genes associated with two previously identified QTLs for seed storability through genome association analysis. Among the screened genes, two superoxide dismutase (SOD) genes, OsCSD2 (Copper/zinc Superoxide Dismutase 2) and OsCSD3, were selected for further study. The generation of overexpression and CRISPR/Cas9 mutant transgenic lines revealed that OsCSD2 and OsCSD3 play a positive regulatory role in enhancing rice seed storability. Subsequent exploration of the physiological mechanisms demonstrated that overexpression lines exhibited lower relative electrical conductivity, indicative of reduced cell membrane damage, while knockout lines displayed the opposite trend. Furthermore, the overexpression lines of OsCSD2 and OsCSD3 showed significant increases not only in SOD but also in CAT and POD activities, highlighting an augmented antioxidant system in the transgenic seeds. Additionally, hormone profiling indicated that ABA contributed to the improved seed storability observed in these lines. In summary, these findings provide valuable insights into the regulatory mechanisms of OsCSDs in rice storability, with potential applications for mitigating grain loss and enhancing global food security.

7.
HLA ; 103(1): e15320, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081622

RESUMO

Hematopoietic stem cell transplantation (HSCT) offers the highest curative potential for patients with hematological malignancies. Complications including infection, graft-versus-host disease (GVHD), and relapse reflect delayed or dysregulated immune reconstitution. After transplantation, NK cells rapidly reconstitute and are crucial for immune surveillance and immune tolerance. NK cell function is tightly regulated by killer immunoglobin-like receptors (KIRs). Previous studies have revealed that donor KIRs, especially some activated KIRs (aKIRs) are closely related to transplant outcomes. Here, we performed a retrospective study, including 323 patients who received haploidentical (haplo) HSCT in our center. In univariate analysis, donor KIR2DS1, KIR2DS3 and KIR3DS1 gene protected patients with lymphoid disease from Epstein-Barr virus (EBV) and cytomegalovirus (CMV) reactivation, while donor KIR2DS1, KIR2DS5 and KIR3DS1 gene conferred a higher risk of CMV reactivation for patients with myeloid disease. Multivariate analysis confirmed that donor telomeric (Tel) B/x and KIR2DS3 gene best protected patients with lymphoid disease from EBV (p = 0.017) and CMV reactivation (p = 0.004). In myeloid disease, grafts lacking Tel B/x and KIR2DS5 gene correlated with the lowest risk of CMV reactivation (p = 0.018). Besides, donor aKIR genes did not influence the rates of GVHD, relapse, non-relapse mortality (NRM) and overall survival (OS) in this study. The reactivation of EBV and CMV was associated with poor prognosis of haplo-HSCT. In conclusion, we found that donor aKIR genes might have a synergistic effect on CMV and EBV reactivation after haplo-HSCT. Whether the influence of donor aKIR genes varies with disease types remained to be studied.


Assuntos
Infecções por Citomegalovirus , Infecções por Vírus Epstein-Barr , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Humanos , Herpesvirus Humano 4/genética , Soro Antilinfocitário/uso terapêutico , Estudos Retrospectivos , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Alelos , Recidiva Local de Neoplasia/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Doença Enxerto-Hospedeiro/genética , Recidiva
8.
PLoS One ; 19(4): e0281698, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38593173

RESUMO

Several genes involved in the pathogenesis have been identified, with the human leukocyte antigen (HLA) system playing an essential role. However, the relationship between HLA and a cluster of hematological diseases has received little attention in China. Blood samples (n = 123913) from 43568 patients and 80345 individuals without known pathology were genotyped for HLA class I and II using sequencing-based typing. We discovered that HLA-A*11:01, B*40:01, C*01:02, DQB1*03:01, and DRB1*09:01 were prevalent in China. Furthermore, three high-frequency alleles (DQB1*03:01, DQB1*06:02, and DRB1*15:01) were found to be hazardous in malignant hematologic diseases when compared to controls. In addition, for benign hematologic disorders, 7 high-frequency risk alleles (A*01:01, B*46:01, C*01:02, DQB1*03:03, DQB1*05:02, DRB1*09:01, and DRB1*14:54) and 8 high-frequency susceptible genotypes (A*11:01-A*11:01, B*46:01-B*58:01, B*46:01-B*46:01, C*01:02-C*03:04, DQB1*03:01-DQB1*05:02, DQB1*03:03-DQB1*06:01, DRB1*09:01-DRB1*15:01, and DRB1*14:54-DRB1*15:01) were observed. To summarize, our findings indicate the association between HLA alleles/genotypes and a variety of hematological disorders, which is critical for disease surveillance.


Assuntos
Doenças Hematológicas , Antígenos de Histocompatibilidade Classe I , Humanos , Frequência do Gene , Alelos , Cadeias beta de HLA-DQ/genética , Cadeias HLA-DRB1/genética , Genótipo , Antígenos de Histocompatibilidade Classe I/genética , Doenças Hematológicas/genética , Haplótipos , Predisposição Genética para Doença
10.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(6): 1647-1656, 2023 Dec.
Artigo em Zh | MEDLINE | ID: mdl-38071041

RESUMO

OBJECTIVE: To establish a new digital polymerase chain reaction (dPCR) system for the detection of BCR-ABL fusion gene in patients with chronic myeloid leukemia (CML), and explore its analytical performance and clinical applicability in the detection of BCR-ABLp190/210/230. METHODS: A new dPCR system for detecting BCR-ABLp190/210/230 was successfully developed, and its sensitivity difference with qPCR and improvement of drug side effects in patients with CML during drug reduction or withdrawal were compared. RESULTS: Among 176 samples, qPCR and dPCR showed high consistency in the sensitivity of detecting BCR-ABL (82.39%), and the positive rate of dPCR was about 5 times higher that of qPCR (20.45% vs 3.98%). During follow-up, blood routine (25% vs 10%), kidney/liver/stomach (25% vs 20%) and cardiac function (10% vs 0) were significantly improved after drug reduction or withdrawal in patients with initial dPCR negative compared with before drug reduction or withdrawal. CONCLUSIONS: This new dPCR detection system can be applied to the detection of BCR-ABLp190/210/230. It has better consistency and higher positive detection rate than qPCR. Drug withdrawal or dose reduction guided by dPCR has a certain effect on improving drug side effects.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Proteínas de Fusão bcr-abl/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/diagnóstico , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Curr Res Transl Med ; 71(1): 103360, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36427418

RESUMO

INTRODUCTION: Relapse and graft-versus-host disease (GVHD) are the important complications influencing mortality for patients with high-risk acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). GVHD prophylaxis based on post-transplant cyclophosphamide (PTCy) or antithymocyte globulin (ATG) is widely used in haploidentical HSCT (haplo-HSCT). OBJECTIVE: We developed a modified intensified conditioning regimen including fludarabine (Flu) and investigated the effect of ATG-PTCy combination on transplant outcomes in high-risk AML and MDS compared with those patients who received only ATG as GVHD prophylaxis. METHODS: A total of 80 patients with high-risk AML and MDS were divided into two groups and assigned to one-to-one pairing. RESULTS: The modified ATG-PTCy group had more infused mononuclear cells, CD34-positive cells and CD3-positive cells than those in the ATG group (P < 0.05). The amount of platelet transfusion was higher in the ATG group than the modified ATG-PTCy group [2 (range, 1-6) U vs 2 (range, 1-5) U, P = 0.005]. The median of platelet recovery was better in the modified ATG-PTCy group than in the ATG group (12 days vs 13 days,P = 0.041). The infection rates of bacteria, fungi and virus at 100 days after transplantation were similar in both groups. Compared with the ATG group, individuals who received the modified ATG-PTCy regimen had higher 2-year GVHD- and relapse-free survival(GRFS) [60.0% (95%CI, 44.9-75.1%) vs 34.8% (95%CI, 19.9-49.7%), P = 0.028]; lower 180-day incidence of II-IV acute GVHD (aGVHD) [15.0% (95%CI, 4.0-26.0%) vs 39.8% (95%CI, 23.9-55.7%), P = 0.029]; lower 1-year incidence of moderate to severe chronic GVHD (cGVHD) [2.9% (95%CI, 2.0-3.8%) vs 19.6% (95%CI, 5.3-33.9%), P = 0.039]; and without an increase in the 2-year cumulative incidence of relapse (CIR) [19.5% (95%CI, 6.6-32.4%) vs 30.4% (95%CI, 15.3-45.5%), P = 0.291]. CONCLUSIONS: High-dose stem cells can promote blood cell implantation. The modified ATG-PTCy combination was associated with decreased risk of aGVHD and cGVHD, no increased risk of recurrence, and improved GRFS. It represents an effective strategy for high risk AML and MDS.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Soro Antilinfocitário/uso terapêutico , Condicionamento Pré-Transplante , Ciclofosfamida/uso terapêutico , Doença Enxerto-Hospedeiro/epidemiologia , Doença Enxerto-Hospedeiro/prevenção & controle , Doença Enxerto-Hospedeiro/tratamento farmacológico , Síndromes Mielodisplásicas/terapia , Leucemia Mieloide Aguda/tratamento farmacológico
12.
Sci Rep ; 13(1): 9773, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328612

RESUMO

The function of natural killer (NK) cells has previously been implicated in hematopoietic-related diseases. Killer immunoglobulin-like receptors (KIR) play an important role in NK cells after hematopoietic stem cell transplantation. To explore the immunogenetic predisposition of hematological-related diseases, herein, a multi-center retrospective study in China was conducted, analyzing and comparing 2519 patients with hematopathy (mainly, acute lymphoblastic leukemia, acute myeloid leukemia, aplastic anemia, and myelodysplastic syndrome) to 18,108 individuals without known pathology. Genotyping was performed by polymerase chain reaction with specific sequence primers (PCR-SSP). As a result, we discovered four genes including KIR2DL5 (OR: 0.74, 95% CI 0.59-0.93; Pc = 0.0405), 2DS1 (OR: 0.74, 95% CI 0.59-0.93; Pc = 0.0405), 2DS3 (OR: 0.58, 95% CI 0.41-0.81; Pc = 0.0180), and 3DS1 (OR: 0.74, 95% CI 0.58-0.94; Pc = 0.0405) to be protective factors that significantly reduce the risk of aplastic anemia. Our findings offer new approaches to immunotherapy for hematological-related diseases. As these therapies mature, they are promising to be used alone or in combination with current treatments to help to make blood disorders a manageable disease.


Assuntos
Anemia Aplástica , Doenças Hematológicas , Humanos , Estudos Retrospectivos , Anemia Aplástica/genética , População do Leste Asiático , Receptores KIR/genética , Genótipo , Doenças Hematológicas/genética , Frequência do Gene
13.
Plants (Basel) ; 11(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35684243

RESUMO

Grain quality is a key determinant of commercial value in rice. Efficiently improving grain quality, without compromising grain yield, is a challenge in rice breeding programs. Here we report on the identification and application of a grain quality gene, Chalk7, which causes a slender shape and decreases grain chalkiness in rice. Three allele-specific markers for Chalk7, and two other grain genes (GS3 and Chalk5) were developed, and used to stack the desirable alleles at these loci. The effects of individual or combined alleles at the loci were evaluated using a set of near-isogenic lines, each containing one to three favorable alleles in a common background of an elite variety. We found that the favorable allele combination of the three loci, which rarely occurs in natural rice germplasm, greatly reduces chalky grains without negatively impacting on grain yield. The data for newly developed allele-specific markers and pre-breeding lines will facilitate the improvement of grain appearance quality in rice.

14.
Front Plant Sci ; 13: 866276, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422832

RESUMO

Transmission ratio distortion (TRD) denotes the observed allelic or genotypic frequency deviation from the expected Mendelian segregation ratios in the offspring of a heterozygote. TRD can severely hamper gene flow between and within rice species. Here, we report the fine mapping and characterization of two loci (TRD4.1 and TRD4.2) for TRD using large F2 segregating populations, which are derived from rice chromosome segment substitution lines, each containing a particular genomic segment introduced from the japonica cultivar Nipponbare (NIP) into the indica cultivar Zhenshan (ZS97). The two loci exhibited a preferential transmission of ZS97 alleles in the derived progeny. Reciprocal crossing experiments using near-isogenic lines harboring three different alleles at TRD4.1 suggest that the gene causes male gametic selection. Moreover, the transmission bias of TRD4.2 was diminished in heterozygotes when they carried homozygous TRD4.1 ZS97. This indicates an epistatic interaction between these two loci. TRD4.2 was mapped into a 35-kb region encompassing one candidate gene that is specifically expressed in the reproductive organs in rice. These findings broaden the understanding of the genetic mechanisms of TRD and offer an approach to overcome the barrier of gene flow between the subspecies in rice, thus facilitating rice improvement by introgression breeding.

15.
Science ; 378(6626): 1301-1305, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36548408

RESUMO

Nitrogen vacancy (NV) centers in diamond are atom-scale defects that can be used to sense magnetic fields with high sensitivity and spatial resolution. Typically, the magnetic field is measured by averaging sequential measurements of single NV centers, or by spatial averaging over ensembles of many NV centers, which provides mean values that contain no nonlocal information about the relationship between two points separated in space or time. Here, we propose and implement a sensing modality whereby two or more NV centers are measured simultaneously, and we extract temporal and spatial correlations in their signals that would otherwise be inaccessible. We demonstrate measurements of correlated applied noise using spin-to-charge readout of two NV centers and implement a spectral reconstruction protocol for disentangling local and nonlocal noise sources.

16.
Cell Transplant ; 31: 9636897221102902, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35670196

RESUMO

Genomic loss of mismatched human leukocyte antigen (HLA loss) is one of the most vital immune escape mechanisms of leukemic cells after allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, the methods currently used for HLA loss analysis have some shortcomings. Limited literature has been published, especially in lymphoid malignancies. This study aims to evaluate the incidences, risk factors of HLA loss, and clinical outcomes of HLA loss patients. In all, 160 patients undergoing partially mismatched related donor (MMRD) transplantation from 18 centers in China were selected for HLA loss analysis with the next-generation sequencing (NGS)-based method, which was validated by HLA-KMR. Variables of the prognostic risk factors for HLA loss or HLA loss-related relapse were identified with the logistic regression or the Fine and Gray regression model. An HLA loss detection system, HLA-CLN [HLA chimerism for loss of heterozygosity (LOH) analysis by NGS], was successfully developed. Forty (25.0%) patients with HLA loss were reported, including 27 with myeloid and 13 with lymphoid malignancies. Surprisingly, 6 of those 40 patients did not relapse. The 2-year cumulative incidences of HLA loss (22.7% vs 22.0%, P = 0.731) and HLA loss-related relapse (18.4% vs 20.0%, P = 0.616) were similar between patients with myeloid and lymphoid malignancies. The number of HLA mismatches (5/10 vs <5/10) was significantly associated with HLA loss in the whole cohort [odds ratio (OR): 3.15, P = 0.021] and patients with myeloid malignancies (OR: 3.94, P = 0.021). A higher refined-disease risk index (OR: 6.91, P = 0.033) and donor-recipient ABO incompatibility (OR: 4.58, P = 0.057) contributed to HLA loss in lymphoid malignancies. To sum up, HLA-CLN could overcome the limitations of HLA-KMR and achieve a better HLA coverage for more patients. The clinical characteristics and outcomes were similar in patients with HLA loss between myeloid and lymphoid malignancies. In addition, the results suggested that a patient with HLA loss might not always relapse.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Neoplasias , Quimerismo , Doença Enxerto-Hospedeiro/etiologia , Antígenos HLA/genética , Transplante de Células-Tronco Hematopoéticas/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Perda de Heterozigosidade/genética , Recidiva
17.
Sci Rep ; 11(1): 189, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420305

RESUMO

Rice is one of the staple crops in the world. Grain size is an important determinant of rice grain yield, but the genetic basis of the grain size remains unclear. Here, we report a set of chromosome segment substitution lines (CSSL) developed in the genetic background of the genome-sequenced indica cultivar Zhenshan 97. Genotyping of the CSSLs by single nucleotide polymorphism array shows that most carry only one or two segments introduced from the genome-sequenced japonica cultivar Nipponbare. Using this population and the high-density markers, a total of 43 quantitative trait loci were identified for seven panicle- and grain-related traits. Among these loci, the novel locus qGL11 for grain length and thousand-grain weight was validated in a CSSL-derived segregating population and finely mapped to a 25-kb region that contains an IAA-amido synthetase gene OsGH3.13, This gene exhibited a significant expression difference in the young panicle between the near-isogenic lines that carry the contrasting Zhenshan 97 and Nipponbare alleles at qGL11. Expression and sequence analyses suggest that this gene is the most likely candidate for qGL11. Furthermore, several OsGH3.13 mutants induced by a CRISPR/Cas9 approach in either japonica or indica exhibit an increased grain length and thousand-grain weight, thus enhancing the final grain yield per plant. These findings provide insights into the genetic basis of grain size for the improvement of yield potential in rice breeding programs.


Assuntos
Cromossomos de Plantas/genética , Genes de Plantas/genética , Oryza/genética , Locos de Características Quantitativas/genética , Alelos , Mapeamento Cromossômico , Genótipo , Fenótipo , Melhoramento Vegetal
18.
HLA ; 98(5): 459-466, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34375029

RESUMO

Mastering the SNP content in the HLA region can be based on it to judiciously select unrelated donor stem cells with preferable MHC matching to lower postoperative complications. Herein, quantitative PCR-based primers and probes were designed for 10 transplants outcome-associated SNP loci with two-allelic polymorphism, and then a new detection system ("HLA-10-SNP") was established. Compared with Sanger sequencing, its accuracy has been proven to reach 100%. Additionally, fluorescent PCR typing of 10 important SNPs via this system expressed excellent repeatability (sensitivity, 20 ng). Overall, the new system achieves single-sample classification precision and easily distinguishable results, equipped with the advantages of simple, rapid, accurate, and effective, promising to acquire widespread popularization and application in clinical settings.


Assuntos
Polimorfismo de Nucleotídeo Único , Doadores não Relacionados , Alelos , Teste de Histocompatibilidade , Humanos , Reação em Cadeia da Polimerase em Tempo Real
19.
Rice (N Y) ; 13(1): 52, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32757080

RESUMO

BACKGROUND: Seed dormancy, a quality characteristic that plays a role in seed germination, seedling establishment and grain yield, is affected by multiple genes and environmental factors. The genetic and molecular mechanisms underlying seed dormancy in rice remain largely unknown. RESULTS: Quantitative trait loci (QTLs) for seed dormancy were identified in two different mapping populations, a chromosome segment substitution line (CSSL) and backcross inbred line (BIL) population, both derived from the same parents Nipponbare, a japonica cultivar with seed dormancy, and 9311, an indica cultivar lacking seed dormancy. A total of 12 and 27 QTL regions for seed dormancy were detected in the CSSLs and BILs, respectively. Among these regions, four major loci (qSD3.1, qSD3.2, qSD5.2 and qSD11.2) were commonly identified for multiple germination parameters associated with seed dormancy in both populations, with Nipponbare alleles delaying the seed germination percentage and decreasing germination uniformity. Two loci (qSD3.1 and qSD3.2) were individually validated in the near-isogenic lines containing the QTL of interest. The effect of qSD3.2 was further confirmed in a CSSL-derived F2 population. Furthermore, both qSD3.1 and qSD3.2 were sensitive to abscisic acid and exhibited a significant epistatic interaction to increase seed dormancy. CONCLUSIONS: Our results indicate that the integration of the developed CSSLs and BILs with high-density markers can provide a powerful tool for dissecting the genetic basis of seed dormancy in rice. Our findings regarding the major loci and their interactions with several promising candidate genes that are induced by abscisic acid and specifically expressed in the seeds will facilitate further gene discovery and a better understanding of the genetic and molecular mechanisms of seed dormancy for improving seed quality in rice breeding programs.

20.
Front Plant Sci ; 11: 563548, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193492

RESUMO

Transmission ratio distortion (TRD) refers to a widespread phenomenon in which one allele is transmitted by heterozygotes more frequently to the progeny than the opposite allele. TRD is considered as a mark suggesting the presence of a reproductive barrier. However, the genetic and molecular mechanisms underlying TRD in rice remain largely unknown. In the present study, a population of backcross inbred lines (BILs) derived from the cross of a japonica cultivar Nipponbare (NIP) and an indica variety 9311 was utilized to study the genetic base of TRD. A total of 18 genomic regions were identified for TRD in the BILs. Among them, 12 and 6 regions showed indica (9311) and japonica (NIP) alleles with preferential transmission, respectively. A series of F2 populations were used to confirm the TRD effects, including six genomic regions that were confirmed by chromosome segment substitution line (CSSL)-derived F2 populations from intersubspecific allelic combinations. However, none of the regions was confirmed by the CSSL-derived populations from intrasubspecific allelic combination. Furthermore, significant epistatic interaction was found between TRD1.3 and TRD8.1 suggesting that TRD could positively contribute to breaking intersubspecific reproductive barriers. Our results have laid the foundation for identifying the TRD genes and provide an effective strategy to breakdown TRD for breeding wide-compatible lines, which will be further utilized in the intersubspecific hybrid breeding programs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA