Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pineal Res ; 76(4): e12957, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38803089

RESUMO

Recently, microorganism and exogenous melatonin application has been recognized as an efficient biological tool for enhancing salt tolerance and heavy metal detoxification in agriculture crops. Thus, the goal of this study was to isolate and evaluate a novel melatonin-producing plant growth promoting bacterium. With high-throughput whole genome sequencing, phytohormone measurements, expression profiling, and biochemical analysis, we can identify a novel PGPB that produces melatonin and unravel how it promotes soybean growth and development and protects against salt and Cd stress. We identify the melatonin synthesis pathway (tryptophan→tryptamine→serotonin melatonin) of the halotolerant (NaCl > 800 mM) and heavy metal-resistant (Cd >3 mM) rhizobacterium Bacillus safensis EH143 and use it to treat soybean plants subjected to Cd and NaCl stresses. Results show that EH143 will highly bioaccumulate heavy metals and significantly improve P and Ca2+ uptake and the K+/Na+ (93%↑under salt stress) ratio while reducing Cd uptake (49% under Cd stress) in shoots. This activity was supported by the expression of the ion regulator HKT1, MYPB67, and the calcium sensors CDPK5 and CaMK1 which ultimately led to increased plant growth. EH143 significantly decreased ABA content in shoots by 13%, 20%, and 34% and increased SA biosynthesis in shoots by 14.8%, 31%, and 48.2% in control, salt, and Cd-treated plants, upregulating CYP707A1 and CYP707A2 and PAL1 and ICS, respectively. The melatonin content significantly decreased along with a reduced expression of ASMT3 following treatment with EH143; moreover, reduced expression of peroxidase (POD) and superoxide dismutase (SOD) by 134.5% and 39% under salt+Cd stress, respectively and increased level of total amino acids were observed. Whole-genome sequencing and annotation of EH143 revealed the presence of the melatonin precursor tryptophan synthase (trpA, trpB, trpS), metal and other ion regulators (Cd: cadA, potassium: KtrA and KtrB, phosphate: glpT, calcium: yloB, the sodium/glucose cotransporter: sgIT, and the magnesium transporter: mgtE), and enzyme activators (including the siderophore transport proteins yfiZ and yfhA, the SOD sodA, the catalase katA1, and the glutathione regulator KefG) that may be involved in programming the plant metabolic system. As a consequence, EH143 treatment significantly reduced the contents of lipid peroxidation (O2-, MDA, and H2O2) up to 69%, 46%, and 29% in plants under salt+Cd stress, respectively. These findings suggest that EH143 could be a potent biofertilizer to alleviate NaCl and Cd toxicity in crops and serve as an alternative substitute for exogenous melatonin application.


Assuntos
Bacillus , Cádmio , Glycine max , Melatonina , Melatonina/metabolismo , Glycine max/metabolismo , Glycine max/efeitos dos fármacos , Glycine max/microbiologia , Cádmio/metabolismo , Bacillus/metabolismo , Estresse Salino , Estresse Fisiológico/efeitos dos fármacos , Tolerância ao Sal
2.
Physiol Plant ; 176(2): e14258, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38522952

RESUMO

Salt and drought are documented among the most detrimental and persistent abiotic stresses for crop production. Here, we investigated the impact of Pseudomonas koreensis strain S4T10 on plant performance under salt and drought stress. Arabidopsis thaliana Col-0 wild type and atnced3 mutant plants were inoculated with P. koreensis or tap water and exposed to NaCl (100 mM) for five days and drought stress by withholding water for seven days. P. koreensis significantly enhanced plant biomass and photosynthetic pigments under salt and drought stress conditions. Moreover, P. koreensis activated the antioxidant defence by modulating glutathione (GSH), superoxide dismutase (SOD), peroxidase (POD), and polyphenol oxidase (PPO) activities to scavenge the reactive oxygen species produced due to the stress. In addition, the application of P. koreensis upregulated the expression of genes associated with antioxidant responses, such as AtCAT1, AtCAT3, and AtSOD. Similarly, genes linked to salt stress, such as AtSOS1, AtSOS2, AtSOS3, AtNHX1, and AtHKT1, were also upregulated, affirming the positive role of P. koreensis S4T10 in streamlining the cellular influx and efflux transport systems during salt stress. Likewise, the PGPB inoculation was observed to regulate the expression of drought-responsive genes AtDREB2A, AtDREB2B, and ABA-responsive genes AtAO3, AtABA3 indicating that S4T10 enhanced drought tolerance via modulation of the ABA pathway. The results of this study affirm that P. koreensis S4T10 could be further developed as a biofertilizer to mitigate salt and drought stress at the same time.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Pseudomonas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Secas , Antioxidantes/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico , Água/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
3.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928504

RESUMO

Melatonin (MEL), a hormone primarily known for its role in regulating sleep and circadian rhythms in animals, has emerged as a multifaceted molecule in plants. Recent research has shed light on its diverse functions in plant growth and defense mechanisms. This review explores the intricate roles of MEL in plant growth and defense responses. MEL is involved in plant growth owing to its influence on hormone regulation. MEL promotes root elongation and lateral root formation and enhances photosynthesis, thereby promoting overall plant growth and productivity. Additionally, MEL is implicated in regulating the circadian rhythm of plants, affecting key physiological processes that influence plant growth patterns. MEL also exhibits antioxidant properties and scavenges reactive oxygen species, thereby mitigating oxidative stress. Furthermore, it activates defense pathways against various biotic stressors. MEL also enhances the production of secondary metabolites that contribute to plant resistance against environmental changes. MEL's ability to modulate plant response to abiotic stresses has also been extensively studied. It regulates stomatal closure, conserves water, and enhances stress tolerance by activating stress-responsive genes and modulating signaling pathways. Moreover, MEL and nitric oxide cooperate in stress responses, antioxidant defense, and plant growth. Understanding the mechanisms underlying MEL's actions in plants will provide new insights into the development of innovative strategies for enhancing crop productivity, improving stress tolerance, and combating plant diseases. Further research in this area will deepen our knowledge of MEL's intricate functions and its potential applications in sustainable agriculture.


Assuntos
Melatonina , Desenvolvimento Vegetal , Melatonina/metabolismo , Antioxidantes/metabolismo , Estresse Fisiológico , Plantas/metabolismo , Ritmo Circadiano/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
4.
BMC Plant Biol ; 23(1): 639, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082263

RESUMO

BACKGROUND: Chitosan biopolymer is an emerging non-toxic and biodegradable plant elicitor or bio-stimulant. Chitosan nanoparticles (CSNPs) have been used for the enhancement of plant growth and development. On the other hand, NO is an important signaling molecule that regulates several aspects of plant physiology under normal and stress conditions. Here we report the synthesis, characterization, and use of chitosan-GSNO nanoparticles for improving drought stress tolerance in soybean. RESULTS: The CSGSNONPs released NO gas for a significantly longer period and at a much lower rate as compared to free GSNO indicating that incorporation of GSNO in CSNPs can protect the NO-donor from rapid decomposition and ensure optimal NO release. CS-GSNONPs improved drought tolerance in soybean plants reflected by a significant increase in plant height, biomass, root length, root volume, root surface area, number of root tips, forks, and nodules. Further analyses indicated significantly lower electrolyte leakage, higher proline content, higher catalase, and ascorbate peroxidase activity, and reduction in MDA and H2O2 contents after treatment with 50 µM CS-GSNONPs under drought stress conditions. Quantitative real-time PCR analysis indicated that CS-GSNONPs protected against drought-induced stress by regulating the expression of drought stress-related marker genes such as GmDREB1a, GmP5CS, GmDEFENSIN, and NO-related genes GmGSNOR1 and GmNOX1. CONCLUSIONS: This study highlights the potential of nano-technology-based delivery systems for nitric oxide donors to improve plant growth, and development and protect against stresses.


Assuntos
Quitosana , Nanopartículas , Secas , Resistência à Seca , Glycine max/genética , Peróxido de Hidrogênio/metabolismo , Estresse Fisiológico/genética
5.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902213

RESUMO

Nitric oxide (NO), a colorless gaseous molecule, is a lipophilic free radical that easily diffuses through the plasma membrane. These characteristics make NO an ideal autocrine (i.e., within a single cell) and paracrine (i.e., between adjacent cells) signalling molecule. As a chemical messenger, NO plays a crucial role in plant growth, development, and responses to biotic and abiotic stresses. Furthermore, NO interacts with reactive oxygen species, antioxidants, melatonin, and hydrogen sulfide. It regulates gene expression, modulates phytohormones, and contributes to plant growth and defense mechanisms. In plants, NO is mainly produced via redox pathways. However, nitric oxide synthase, a key enzyme in NO production, has been poorly understood recently in both model and crop plants. In this review, we discuss the pivotal role of NO in signalling and chemical interactions as well as its involvement in the mitigation of biotic and abiotic stress conditions. In the current review, we have discussed various aspects of NO including its biosynthesis, interaction with reactive oxygen species (ROS), melatonin (MEL), hydrogen sulfide, enzymes, phytohormones, and its role in normal and stressful conditions.


Assuntos
Sulfeto de Hidrogênio , Melatonina , Óxido Nítrico/metabolismo , Melatonina/metabolismo , Sulfeto de Hidrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo , Desenvolvimento Vegetal , Estresse Fisiológico
6.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569638

RESUMO

Aedes aegypti, also known as the dengue mosquito or the yellow fewer mosquito, is the vector of dengue, chikungunya, Zika, Mayaro and yellow fever viruses. The A. aegypti genome contains an array of gustatory receptor (GR) proteins that are related to the recognition of taste. In this study, we performed in silico molecular characterization of all 72 A. aegypti GRs reported in the latest version of A. aegypti genome AaegL5. Phylogenetic analysis classified the receptors into three major clads. Multiple GRs were found to encode multiple transcripts. Physicochemical attributes such as the aliphatic index, hydropathicity index and isoelectric point indicated that A. aegypti gustatory receptors are highly stable and are tailored to perform under a variety of cellular environments. Analysis for subcellular localization indicated that all the GRs are located either in the extracellular matrix or the plasma membrane. Results also indicated that the GRs are distributed mainly on chromosomes 2 and 3, which house 22 and 49 GRs, respectively, whereas chromosome 1 houses only one GR. NCBI-CDD analysis showed the presence of a highly conserved 7tm_7 chemosensory receptor protein superfamily that includes gustatory and odorant receptors from insect species Anopheles gambiae and Drosophila melanogaster. Further, three significantly enriched ungapped motifs in the protein sequence of all 72 A. aegypti gustatory receptors were found. High-quality 3D models for the tertiary structures were predicted with significantly higher confidence, along with ligand-binding residues. Prediction of S-nitrosylation sites indicated the presence of target cysteines in all the GRs with close proximity to the ligand-bindings sites within the 3D structure of the receptors. In addition, two highly conserved motifs inside the GR proteins were discovered that house a tyrosine (Y) and a cysteine (C) residue which may serve as targets for NO-mediated tyrosine nitration and S-nitrosylation, respectively. This study will help devise strategies for functional genomic studies of these important receptor molecules in A. aegypti and other mosquito species through in vitro and in vivo studies.


Assuntos
Aedes , Dengue , Proteínas de Drosophila , Infecção por Zika virus , Zika virus , Animais , Drosophila melanogaster/genética , Paladar , Aedes/genética , Ligantes , Filogenia , Mosquitos Vetores , Receptores de Superfície Celular/genética , Proteínas de Drosophila/genética
7.
Int J Mol Sci ; 24(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37373048

RESUMO

Heavy metal toxicity, including lead (Pb) toxicity, is increasing in soils, and heavy metals are considered to be toxic in small amounts. Pb contamination is mainly caused by industrialization (e.g., smelting and mining), agricultural practices (e.g., sewage sludge and pests), and urban practices (e.g., lead paint). An excessive concentration of Pb can seriously damage and threaten crop growth. Furthermore, Pb adversely affects plant growth and development by affecting the photosystem, cell membrane integrity, and excessive production of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) and superoxide (O2-). Nitric oxide (NO) is produced via enzymatic and non-enzymatic antioxidants to scavenge ROS and lipid peroxidation substrates to protect cells from oxidative damage. Thus, NO improves ion homeostasis and confers resistance to metal stress. In the present study, we investigated the effect of exogenously applied NO and S-nitrosoglutathione in soybean plants Our results demonstrated that exogenously applied NO aids in better growth under lead stress due to its ability in sensing, signaling, and stress tolerance in plants under heavy metal stress along with lead stress. In addition, our results showed that S-nitrosoglutathione (GSNO) has a positive effect on soybean seedling growth under lead-induced toxicity and that NO supplementation helps to reduce chlorophyll maturation and relative water content in leaves and roots following strong bursts under lead stress. GSNO supplementation (200 µM and 100 µM) reduced compaction and approximated the oxidative damage of MDA, proline, and H2O2. Moreover, under plant stress, GSNO application was found to relieve the oxidative damage by reactive oxygen species (ROS) scavenging. Additionally, modulation of NO and phytochelatins (PCS) after prolonged metal reversing GSNO application confirmed detoxification of ROS induced by the toxic metal lead in soybean. In summary, the detoxification of ROS caused by toxic metal concentrations in soybean is confirmed by using NO, PCS, and traditionally sustained concentrations of metal reversing GSNO application.


Assuntos
Metais Pesados , S-Nitrosoglutationa , Espécies Reativas de Oxigênio/metabolismo , S-Nitrosoglutationa/metabolismo , Glycine max/metabolismo , Peróxido de Hidrogênio/metabolismo , Chumbo/toxicidade , Chumbo/metabolismo , Metais Pesados/metabolismo , Antioxidantes/metabolismo , Plantas/metabolismo , Óxido Nítrico/metabolismo , Intoxicação por Metais Pesados
8.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068913

RESUMO

Drought stress is a significant threat to agricultural productivity and poses challenges to plant survival and growth. Research into microbial plant biostimulants faces difficulties in understanding complicated ecological dynamics, molecular mechanisms, and specificity; to address these knowledge gaps, collaborative efforts and innovative strategies are needed. In the present study, we investigated the potential role of Brevundimonas vesicularis (S1T13) as a microbial plant biostimulant to enhance drought tolerance in Arabidopsis thaliana. We assessed the impact of S1T13 on Col-0 wild-type (WT) and atnced3 mutant plants under drought conditions. Our results revealed that the inoculation of S1T13 significantly contributed to plant vigor, with notable improvements observed in both genotypes. To elucidate the underlying mechanisms, we studied the role of ROS and their regulation by antioxidant genes and enzymes in plants inoculated with S1T13. Interestingly, the inoculation of S1T13 enhanced the activities of GSH, SOD, POD, and PPO by 33, 35, 41, and 44% in WT and 24, 22, 26, and 33% in atnced3, respectively. In addition, S1T13 upregulated the expression of antioxidant genes. This enhanced antioxidant machinery played a crucial role in neutralizing ROS and protecting plant cells from oxidative damage during drought stress. Furthermore, we investigated the impact of S1T13 on ABA and drought-stress-responsive genes. Similarly, S1T13 modulated the production of ABA and expression of AO3, ABA3, DREB1A, and DREB2A by 31, 42, 37, 41, and 42% in WT and 20, 29, 27, 38, and 29% in atnced3. The improvement in plant vigor, coupled with the induction of the antioxidant system and modulation of ABA, indicates the pivotal role of S1T13 in enhancing the drought stress tolerance of the plants. Conclusively, the current study provides valuable insights for the application of multitrait S1T13 as a novel strain to improve drought stress tolerance in plants and could be added to the consortium of biofertilizers.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Antioxidantes/metabolismo , Secas , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Proteínas de Plantas/genética
9.
Int J Mol Sci ; 24(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239837

RESUMO

Drought is one of the most detrimental factors that causes significant effects on crop development and yield. However, the negative effects of drought stress may be alleviated with the aid of exogenous melatonin (MET) and the use of plant-growth-promoting bacteria (PGPB). The present investigation aimed to validate the effects of co-inoculation of MET and Lysinibacillus fusiformis on hormonal, antioxidant, and physio-molecular regulation in soybean plants to reduce the effects of drought stress. Therefore, ten randomly selected isolates were subjected to various plant-growth-promoting rhizobacteria (PGPR) traits and a polyethylene-glycol (PEG)-resistance test. Among these, PLT16 tested positive for the production of exopolysaccharide (EPS), siderophore, and indole-3-acetic acid (IAA), along with higher PEG tolerance, in vitro IAA, and organic-acid production. Therefore, PLT16 was further used in combination with MET to visualize the role in drought-stress mitigation in soybean plant. Furthermore, drought stress significantly damages photosynthesis, enhances ROS production, and reduces water stats, hormonal signaling and antioxidant enzymes, and plant growth and development. However, the co-application of MET and PLT16 enhanced plant growth and development and improved photosynthesis pigments (chlorophyll a and b and carotenoids) under both normal conditions and drought stress. This may be because hydrogen-peroxide (H2O2), superoxide-anion (O2-), and malondialdehyde (MDA) levels were reduced and antioxidant activities were enhanced to maintain redox homeostasis and reduce the abscisic-acid (ABA) level and its biosynthesis gene NCED3 while improving the synthesis of jasmonic acid (JA) and salicylic acid (SA) to mitigate drought stress and balance the stomata activity to maintain the relative water states. This may be possible due to a significant increase in endo-melatonin content, regulation of organic acids, and enhancement of nutrient uptake (calcium, potassium, and magnesium) by co-inoculated PLT16 and MET under normal conditions and drought stress. In addition, co-inoculated PLT16 and MET modulated the relative expression of DREB2 and TFs bZIP while enhancing the expression level of ERD1 under drought stress. In conclusion, the current study found that the combined application of melatonin and Lysinibacillus fusiformis inoculation increased plant growth and could be used to regulate plant function during drought stress as an eco-friendly and low-cost approach.


Assuntos
Bacillaceae , Resistência à Seca , Glycine max , Melatonina , Estresse Oxidativo , Reguladores de Crescimento de Plantas , Melatonina/farmacologia , Resistência à Seca/efeitos dos fármacos , Glycine max/efeitos dos fármacos , Glycine max/metabolismo , Glycine max/microbiologia , Polietilenoglicóis/farmacologia , Polissacarídeos Bacterianos/metabolismo , Sideróforos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
10.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139197

RESUMO

This study aimed to develop a biostimulant formulation using humic acid (HA), silicon, and biochar alone or in combination to alleviate the lethality induced by combined heavy metals (HM-C; As, Cd, and Pb), drought stress (DS; 30-40% soil moisture), and salt stress (SS; 150 mM NaCl) in rice. The results showed that HA, Si, and biochar application alone or in combination improved plant growth under normal, DS, and SS conditions significantly. However, HA increased the lethality of rice by increasing the As, Cd, and Pb uptake significantly, thereby elevating lipid peroxidation. Co-application reduced abscisic acid, elevated salicylic acid, and optimized the Ca2+ and Si uptake. This subsequently elevated the K+/Na+ influx and efflux by regulating the metal ion regulators (Si: Lsi1 and Lsi2; K+/Na+: OsNHX1) and increased the expressions of the stress-response genes OsMTP1 and OsNramp in the rice shoots. Melatonin synthesis was significantly elevated by HM-C (130%), which was reduced by 50% with the HA + Si + biochar treatment. However, in the SS- and DS-induced crops, the melatonin content showed only minor differences. These findings suggest that the biostimulant formulation could be used to mitigate SS and DS, and precautions should be taken when using HA for heavy metal detoxification.


Assuntos
Melatonina , Metais Pesados , Oryza , Antioxidantes/metabolismo , Oryza/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Substâncias Húmicas , Melatonina/metabolismo , Cádmio/metabolismo , Silício/farmacologia , Silício/metabolismo , Salinidade , Secas , Chumbo/metabolismo , Metais Pesados/metabolismo
11.
Int J Mol Sci ; 23(21)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36362013

RESUMO

Seed or pod shattering in rice (Oryza sativa) is considered to be one of the major factors involved in the domestication of rice as a crop. High seed shattering results in significant yield losses. In this study, we characterize the RICEHIGHSHATTERING 1 (RHS1) that corresponds to the locus LOC_Os04g41250 from a greenhouse screen, involving 145 Ac/Ds transposon mutant rice lines. The knockout mutant line rhs1 exhibited a significantly high shattering of grains in comparison to the wild-type plants. The exogenous application of nitric oxide (NO) resulted in a significant reduction in the expression of RHS1 in wild-type rice plants. The absence of RHS1, which encodes a putative armadillo/beta-catenin repeat family protein, resulted in high sensitivity of the rhs1 plants to nitrosative stress. Interestingly, the basal expression levels of QSH1 and SHAT1 genes (transcription factors that regulate seed-pod shattering in rice) were significantly lower in these plants than in wild-type plants; however, nitrosative stress negatively regulated the expression of QSH1 and SHAT1 in both WT and rhs1 plants, but positively regulated QSH4 expression in rhs1 plants alone. The expression levels of genes responsible for NO production (OsNIA1, OsNIA2, and OsNOA1) were lower in rhs1 plants than in WT plants under normal conditions. However, under nitrosative stress, the expression of OsNIA2 significantly increased in rhs1 plants. The expression of CPL1 (a negative regulator of seed shattering in rice) was significantly lower in rhs1 plants, and we found that CPL1 expression was correlated with S-nitrosothiol (SNO) alteration in rhs1. Interestingly noe1, a rice mutant with high SNO levels, exhibited low seed shattering, whereas rhs1 resulted in low SNO levels with high seed shattering. Therefore, RHS1 is a novel gene that negatively regulates the shattering trait in rice via regulation of endogenous SNO levels. However, the molecular mechanisms involved in the control of RHS1-mediated regulation of seed shattering and its interaction with nitric oxide and involvement in plant defense need to be investigated further.


Assuntos
Oryza , S-Nitrosotióis , Oryza/genética , Locos de Características Quantitativas , Óxido Nítrico , Sementes/genética
13.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35163578

RESUMO

Nitric oxide (NO) is a versatile signaling molecule with diverse roles in plant biology. The NO-mediated signaling mechanism includes post-translational modifications (PTMs) of target proteins. There exists a close link between NO-mediated PTMs and the proteasomal degradation of proteins via ubiquitylation. In some cases, ubiquitin-mediated proteasomal degradation of target proteins is followed by an NO-mediated post-translational modification on them, while in other cases NO-mediated PTMs can regulate the ubiquitylation of the components of ubiquitin-mediated proteasomal machinery for promoting their activity. Another pathway that links NO signaling with the ubiquitin-mediated degradation of proteins is the N-degron pathway. Overall, these mechanisms reflect an important mechanism of NO signal perception and transduction that reflect a close association of NO signaling with proteasomal degradation via ubiquitylation. Therefore, this review provides insight into those pathways that link NO-PTMs with ubiquitylation.


Assuntos
Óxido Nítrico/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Transdução de Sinais , Ubiquitina/metabolismo , Ubiquitinação , Óxido Nítrico/genética , Proteínas de Plantas/genética , Plantas/genética , Complexo de Endopeptidases do Proteassoma/genética , Ubiquitina/genética
14.
Int J Mol Sci ; 23(17)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36077126

RESUMO

Sustainable agriculture is increasingly being put in danger by environmental contamination with dangerous heavy metals (HMs), especially lead (Pb). Plants have developed a sophisticated mechanism for nitric oxide (NO) production and signaling to regulate hazardous effects of abiotic factors, including HMs. In the current study, we investigated the role of exogenously applied sodium nitroprusside (SNP, a nitric oxide (NO) donor) in ameliorating the toxic effects of lead (Pb) on rice. For this purpose, plants were subjected to 1.2 mM Pb alone and in combination with 100 µM SNP. We found that under 1.2 mM Pb stress conditions, the accumulation of oxidative stress markers, including hydrogen peroxide (H2O2) (37%), superoxide anion (O2-) (28%), malondialdehyde (MDA) (33%), and electrolyte leakage (EL) (34%), was significantly reduced via the application of 100 µM SNP. On the other hand, under the said stress of Pb, the activity of the reactive oxygen species (ROS) scavengers such as polyphenol oxidase (PPO) (60%), peroxidase (POD) (28%), catalase (CAT) (26%), superoxide dismutase (SOD) (42%), and ascorbate peroxidase (APX) (58%) was significantly increased via the application of 100 µM SNP. In addition, the application of 100 µM SNP rescued agronomic traits such as plant height (24%), number of tillers per plant (40%), and visible green pigments (44%) when the plants were exposed to 1.2 mM Pb stress. Furthermore, after exposure to 1.2 mM Pb stress, the expression of the heavy-metal stress-related genes OsPCS1 (44%), OsPCS2 (74%), OsMTP1 (83%), OsMTP5 (53%), OsMT-I-1a (31%), and OsMT-I-1b (24%) was significantly enhanced via the application of 100 µM SNP. Overall, our research evaluates that exogenously applied 100 mM SNP protects rice plants from the oxidative damage brought on by 1.2 mM Pb stress by lowering oxidative stress markers, enhancing the antioxidant system and the transcript accumulation of HMs stress-related genes.


Assuntos
Metais Pesados , Oryza , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Peróxido de Hidrogênio/metabolismo , Chumbo/farmacologia , Metais Pesados/metabolismo , Óxido Nítrico/metabolismo , Nitroprussiato/farmacologia , Oryza/metabolismo , Estresse Oxidativo , Plântula/metabolismo , Superóxido Dismutase/metabolismo
15.
Int J Mol Sci ; 22(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430258

RESUMO

Plants are in continuous conflict with the environmental constraints and their sessile nature demands a fine-tuned, well-designed defense mechanism that can cope with a multitude of biotic and abiotic assaults. Therefore, plants have developed innate immunity, R-gene-mediated resistance, and systemic acquired resistance to ensure their survival. Transcription factors (TFs) are among the most important genetic components for the regulation of gene expression and several other biological processes. They bind to specific sequences in the DNA called transcription factor binding sites (TFBSs) that are present in the regulatory regions of genes. Depending on the environmental conditions, TFs can either enhance or suppress transcriptional processes. In the last couple of decades, nitric oxide (NO) emerged as a crucial molecule for signaling and regulating biological processes. Here, we have overviewed the plant defense system, the role of TFs in mediating the defense response, and that how NO can manipulate transcriptional changes including direct post-translational modifications of TFs. We also propose that NO might regulate gene expression by regulating the recruitment of RNA polymerase during transcription.


Assuntos
Resistência à Doença/genética , Óxido Nítrico/genética , Doenças das Plantas/genética , Fatores de Transcrição/genética , RNA Polimerases Dirigidas por DNA/genética , Regulação da Expressão Gênica de Plantas/genética , Óxido Nítrico/metabolismo , Transcrição Gênica/genética
16.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34768971

RESUMO

The intrinsic defense mechanisms of plants toward pathogenic bacteria have been widely investigated for years and are still at the center of interest in plant biosciences research. This study investigated the role of the AtbZIP62 gene encoding a transcription factor (TF) in the basal defense and systemic acquired resistance in Arabidopsis using the reverse genetics approach. To achieve that, the atbzip62 mutant line (lacking the AtbZIP62 gene) was challenged with Pseudomonas syringae pv. tomato (Pst DC3000) inoculated by infiltration into Arabidopsis leaves at the rosette stage. The results indicated that atbzip62 plants showed an enhanced resistance phenotype toward Pst DC3000 vir over time compared to Col-0 and the susceptible disease controls, atgsnor1-3 and atsid2. In addition, the transcript accumulation of pathogenesis-related genes, AtPR1 and AtPR2, increased significantly in atbzip62 over time (0-72 h post-inoculation, hpi) compared to that of atgsnor1-3 and atsid2 (susceptible lines), with AtPR1 prevailing over AtPR2. When coupled with the recorded pathogen growth (expressed as a colony-forming unit, CFU mL-1), the induction of PR genes, associated with the salicylic acid (SA) defense signaling, in part explained the observed enhanced resistance of atbzip62 mutant plants in response to Pst DC3000 vir. Furthermore, when Pst DC3000 avrB was inoculated, the expression of AtPR1 was upregulated in the systemic leaves of Col-0, while that of AtPR2 remained at a basal level in Col-0. Moreover, the expression of AtAZI (a systemic acquired resistance -related) gene was significantly upregulated at all time points (0-24 h post-inoculation, hpi) in atbzip62 compared to Col-0 and atgsnor1-3 and atsid2. Under the same conditions, AtG3DPH exhibited a high transcript accumulation level 48 hpi in the atbzip62 background. Therefore, all data put together suggest that AtPR1 and AtPR2 coupled with AtAZI and AtG3DPH, with AtAZI prevailing over AtG3DPH, would contribute to the recorded enhanced resistance phenotype of the atbzip62 mutant line against Pst DC3000. Thus, the AtbZIP62 TF is proposed as a negative regulator of basal defense and systemic acquired resistance in plants under Pst DC3000 infection.


Assuntos
Arabidopsis/genética , Arabidopsis/microbiologia , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Pseudomonas syringae/patogenicidade , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genes de Plantas , Fenótipo , Plantas Geneticamente Modificadas , Mapas de Interação de Proteínas/genética , Genética Reversa
17.
Int J Mol Sci ; 22(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070080

RESUMO

In the last two decades, global environmental change has increased abiotic stress on plants and severely affected crops. For example, drought stress is a serious abiotic stress that rapidly and substantially alters the morphological, physiological, and molecular responses of plants. In Arabidopsis, several drought-responsive genes have been identified; however, the underlying molecular mechanism of drought tolerance in plants remains largely unclear. Here, we report that the "domain of unknown function" novel gene DUF569 (AT1G69890) positively regulates drought stress in Arabidopsis. The Arabidopsis loss-of-function mutant atduf569 showed significant sensitivity to drought stress, i.e., severe wilting at the rosette-leaf stage after water was withheld for 3 days. Importantly, the mutant plant did not recover after rewatering, unlike wild-type (WT) plants. In addition, atduf569 plants showed significantly lower abscisic acid accumulation under optimal and drought-stress conditions, as well as significantly higher electrolyte leakage when compared with WT Col-0 plants. Spectrophotometric analyses also indicated a significantly lower accumulation of polyphenols, flavonoids, carotenoids, and chlorophylls in atduf569 mutant plants. Overall, our results suggest that novel DUF569 is a positive regulator of the response to drought in Arabidopsis.


Assuntos
Aclimatação/genética , Arabidopsis/genética , Secas , Genes de Plantas , Ácido Abscísico/metabolismo , Aclimatação/fisiologia , Antioxidantes/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Peroxidação de Lipídeos , Mutação com Perda de Função , Fenótipo , Plantas Geneticamente Modificadas , Estresse Fisiológico/genética
18.
Molecules ; 26(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34500550

RESUMO

Global warming is impacting the growth and development of economically important but sensitive crops, such as soybean (Glycine max L.). Using pleiotropic signaling molecules, melatonin can relieve the negative effects of high temperature by enhancing plant growth and development as well as modulating the defense system against abiotic stresses. However, less is known about how melatonin regulates the phytohormones and polyamines during heat stress. Our results showed that high temperature significantly increased ROS and decreased photosynthesis efficiency in soybean plants. Conversely, pretreatment with melatonin increased plant growth and photosynthetic pigments (chl a and chl b) and reduced oxidative stress via scavenging hydrogen peroxide and superoxide and reducing the MDA and electrolyte leakage contents. The inherent stress defense responses were further strengthened by the enhanced activities of antioxidants and upregulation of the expression of ascorbate-glutathione cycle genes. Melatonin mitigates heat stress by increasing several biochemicals (phenolics, flavonoids, and proline), as well as the endogenous melatonin and polyamines (spermine, spermidine, and putrescine). Furthermore, the positive effects of melatonin treatment also correlated with a reduced abscisic acid content, down-regulation of the gmNCED3, and up-regulation of catabolic genes (CYP707A1 and CYP707A2) during heat stress. Contrarily, an increase in salicylic acid and up-regulated expression of the defense-related gene PAL2 were revealed. In addition, melatonin induced the expression of heat shock protein 90 (gmHsp90) and heat shock transcription factor (gmHsfA2), suggesting promotion of ROS detoxification via the hydrogen peroxide-mediated signaling pathway. In conclusion, exogenous melatonin improves the thermotolerance of soybean plants and enhances plant growth and development by activating antioxidant defense mechanisms, interacting with plant hormones, and reprogramming the biochemical metabolism.


Assuntos
Antioxidantes/metabolismo , Glycine max/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Melatonina/farmacologia , Oxirredução/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Poliaminas/metabolismo , Plântula/efeitos dos fármacos , Termotolerância/efeitos dos fármacos , Ácido Abscísico/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutationa/metabolismo , Resposta ao Choque Térmico/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Plântula/metabolismo , Transdução de Sinais/efeitos dos fármacos , Glycine max/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
19.
Int J Mol Sci ; 21(5)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138325

RESUMO

Salt stress is one of the most serious threats in plants, reducing crop yield and production. The salt overly sensitive (SOS) pathway in plants is a salt-responsive pathway that acts as a janitor of the cell to sweep out Na+ ions. Transcription factors (TFs) are key regulators of expression and/or repression of genes. The basic leucine zipper (bZIP) TF is a large family of TFs regulating various cellular processes in plants. In the current study, we investigated the role of the Arabidopsis thaliana bZIP62 TF in the regulation of SOS signaling pathway by measuring the transcript accumulation of its key genes such as SOS1, 2, and 3, in both wild-type (WT) and atbzip62 knock-out (KO) mutants under salinity stress. We further observed the activation of enzymatic and non-enzymatic antioxidant systems in the wild-type, atbzip62, atcat2 (lacking catalase activity), and atnced3 (lacking 9-cis-epoxycarotenoid dioxygenase involved in the ABA pathway) KO mutants. Our findings revealed that atbzip62 plants exhibited an enhanced salt-sensitive phenotypic response similar to atnced3 and atcat2 compared to WT, 10 days after 150 mM NaCl treatment. Interestingly, the transcriptional levels of SOS1, SOS2, and SOS3 increased significantly over time in the atbzip62 upon NaCl application, while they were downregulated in the wild type. We also measured chlorophyll a and b, pheophytin a and b, total pheophytin, and total carotenoids. We observed that the atbzip62 exhibited an increase in chlorophyll and total carotenoid contents, as well as proline contents, while it exhibited a non-significant increase in catalase activity. Our results suggest that AtbZIP62 negatively regulates the transcriptional events of SOS pathway genes, AtbZIP18 and AtbZIP69 while modulating the antioxidant response to salt tolerance in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Carotenoides/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Cloreto de Sódio/farmacologia
20.
BMC Plant Biol ; 19(1): 602, 2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31888479

RESUMO

BACKGROUND: Exposure of plants to different environmental insults instigates significant changes in the cellular redox tone driven in part by promoting the production of reactive nitrogen species. The key player, nitric oxide (NO) is a small gaseous diatomic molecule, well-known for its signaling role during stress. In this study, we focused on abscisic acid (ABA) metabolism-related genes that showed differential expression in response to the NO donor S-nitroso-L-cysteine (CySNO) by conducting RNA-seq-based transcriptomic analysis. RESULTS: CySNO-induced ABA-related genes were identified and further characterized. Gene ontology terms for biological processes showed most of the genes were associated with protein phosphorylation. Promoter analysis suggested that several cis-regulatory elements were activated under biotic and/or abiotic stress conditions. The ABA biosynthetic gene AtAO3 was selected for validation using functional genomics. The loss of function mutant atao3 was found to differentially regulate oxidative and nitrosative stress. Further investigations for determining the role of AtAO3 in plant defense suggested a negative regulation of plant basal defense and R-gene-mediated resistance. The atao3 plants showed resistance to virulent Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000) with gradual increase in PR1 gene expression. Similarly, atao3 plants showed increased hypersensitive response (HR) when challenged with Pst DC3000 (avrB). The atgsnor1-3 and atsid2 mutants showed a susceptible phenotype with reduced PR1 transcript accumulation. Drought tolerance assay indicated that atao3 and atnced3 ABA-deficient mutants showed early wilting, followed by plant death. The study of stomatal structure showed that atao3 and atnced3 were unable to close stomata even at 7 days after drought stress. Further, they showed reduced ABA content and increased electrolyte leakage than the wild-type (WT) plants. The quantitative polymerase chain reaction analysis suggested that ABA biosynthesis genes were down-regulated, whereas expression of most of the drought-related genes were up-regulated in atao3 than in WT. CONCLUSIONS: AtAO3 negatively regulates pathogen-induced salicylic acid pathway, although it is required for drought tolerance, despite the fact that ABA production is not totally dependent on AtAO3, and that drought-related genes like DREB2 and ABI2 show response to drought irrespective of ABA content.


Assuntos
Ácido Abscísico/metabolismo , Aldeído Oxidase/genética , Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Cisteína/análogos & derivados , Regulação da Expressão Gênica de Plantas , Óxido Nítrico/metabolismo , S-Nitrosotióis/metabolismo , Aldeído Oxidase/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Cisteína/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA