Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(24): 4604-4620.e32, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36423582

RESUMO

Natural and induced somatic mutations that accumulate in the genome during development record the phylogenetic relationships of cells; whether these lineage barcodes capture the complex dynamics of progenitor states remains unclear. We introduce quantitative fate mapping, an approach to reconstruct the hierarchy, commitment times, population sizes, and commitment biases of intermediate progenitor states during development based on a time-scaled phylogeny of their descendants. To reconstruct time-scaled phylogenies from lineage barcodes, we introduce Phylotime, a scalable maximum likelihood clustering approach based on a general barcoding mutagenesis model. We validate these approaches using realistic in silico and in vitro barcoding experiments. We further establish criteria for the number of cells that must be analyzed for robust quantitative fate mapping and a progenitor state coverage statistic to assess the robustness. This work demonstrates how lineage barcodes, natural or synthetic, enable analyzing progenitor fate and dynamics long after embryonic development in any organism.


Assuntos
Desenvolvimento Embrionário , Linhagem da Célula/genética , Estudos Retrospectivos , Filogenia , Mutagênese
2.
Proc Natl Acad Sci U S A ; 120(8): e2211703120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36780522

RESUMO

The immune system is increasingly recognized as an important regulator of tissue repair. We developed a regenerative immunotherapy from the helminth Schistosoma mansoni soluble egg antigen (SEA) to stimulate production of interleukin (IL)-4 and other type 2-associated cytokines without negative infection-related sequelae. The regenerative SEA (rSEA) applied to a murine muscle injury induced accumulation of IL-4-expressing T helper cells, eosinophils, and regulatory T cells and decreased expression of IL-17A in gamma delta (γδ) T cells, resulting in improved repair and decreased fibrosis. Encapsulation and controlled release of rSEA in a hydrogel further enhanced type 2 immunity and larger volumes of tissue repair. The broad regenerative capacity of rSEA was validated in articular joint and corneal injury models. These results introduce a regenerative immunotherapy approach using natural helminth derivatives.


Assuntos
Esquistossomose mansoni , Animais , Camundongos , Esquistossomose mansoni/terapia , Citocinas/metabolismo , Schistosoma mansoni , Linfócitos T Auxiliares-Indutores , Antígenos de Helmintos , Imunoterapia
3.
Proc Natl Acad Sci U S A ; 119(15): e2113751119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35394873

RESUMO

Although mammalian retinal ganglion cells (RGCs) normally cannot regenerate axons nor survive after optic nerve injury, this failure is partially reversed by inducing sterile inflammation in the eye. Infiltrative myeloid cells express the axogenic protein oncomodulin (Ocm) but additional, as-yet-unidentified, factors are also required. We show here that infiltrative macrophages express stromal cell­derived factor 1 (SDF1, CXCL12), which plays a central role in this regard. Among many growth factors tested in culture, only SDF1 enhances Ocm activity, an effect mediated through intracellular cyclic AMP (cAMP) elevation and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) activation. SDF1 deficiency in myeloid cells (CXCL12flx/flxLysM-Cre−/+ mice) or deletion of the SDF1 receptor CXCR4 in RGCs (intraocular AAV2-Cre in CXCR4flx/flx mice) or SDF1 antagonist AMD3100 greatly suppresses inflammation-induced regeneration and decreases RGC survival to baseline levels. Conversely, SDF1 induces optic nerve regeneration and RGC survival, and, when combined with Ocm/cAMP, SDF1 increases axon regeneration to levels similar to those induced by intraocular inflammation. In contrast to deletion of phosphatase and tensin homolog (Pten), which promotes regeneration selectively from αRGCs, SDF1 promotes regeneration from non-αRGCs and enables the latter cells to respond robustly to Pten deletion; however, SDF1 surprisingly diminishes the response of αRGCs to Pten deletion. When combined with inflammation and Pten deletion, SDF1 enables many RGCs to regenerate axons the entire length of the optic nerve. Thus, SDF1 complements the effects of Ocm in mediating inflammation-induced regeneration and enables different RGC subtypes to respond to Pten deletion.


Assuntos
Traumatismos do Nervo Óptico , Células Ganglionares da Retina , Axônios/metabolismo , Quimiocina CXCL12/genética , Monócitos/metabolismo , Regeneração Nervosa/fisiologia , Traumatismos do Nervo Óptico/genética , Traumatismos do Nervo Óptico/metabolismo , PTEN Fosfo-Hidrolase/genética , Células Ganglionares da Retina/fisiologia
4.
Cell Commun Signal ; 21(1): 305, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37904133

RESUMO

BACKGROUND: Cell-to-cell communication is vital for tissues to respond, adapt, and thrive in the prevailing milieu. Several mechanisms mediate intercellular signaling, including tunneling nanotubes, gap junctions, and extracellular vesicles (EV). Depending on local and systemic conditions, EVs may contain cargoes that promote survival, neuroprotection, or pathology. Our understanding of pathologic intercellular signaling has been bolstered by disease models using neurons derived from human pluripotent stems cells (hPSC). METHODS: Here, we used hPSC-derived retinal ganglion cells (hRGC) and the mouse visual system to investigate the influence of modulating EV generation on intercellular trafficking and cell survival. We probed the impact of EV modulation on cell survival by decreasing the catabolism of sphingomyelin into ceramide through inhibition of neutral sphingomyelinase (nSMase), using GW4869. We assayed for cell survival in vitro by probing for annexin A5, phosphatidylserine, viable mitochondria, and mitochondrial reactive oxygen species. In vivo, we performed intraocular injections of GW4869 and measured RGC and superior colliculus neuron density and RGC anterograde axon transport. RESULTS: Following twenty-four hours of dosing hRGCs with GW4869, we found that inhibition of nSMase decreased ceramide and enhanced GM1 ganglioside accumulation. This inhibition also reduced the density of small EVs, increased the density of large EVs, and enriched the pro-apoptotic protein, annexin A5. Reducing nSMase activity increased hRGC apoptosis initiation due to enhanced density and uptake of apoptotic particles, as identified by the annexin A5 binding phospholipid, phosphatidylserine. We assayed intercellular trafficking of mitochondria by developing a coculture system of GW4869-treated and naïve hRGCs. In treated cells, inhibition of nSMase reduced the number of viable mitochondria, while driving mitochondrial reactive oxygen species not only in treated, but also in naive hRGCs added in coculture. In mice, 20 days following a single intravitreal injection of GW4869, we found a significant loss of RGCs and their axonal recipient neurons in the superior colliculus. This followed a more dramatic reduction in anterograde RGC axon transport to the colliculus. CONCLUSION: Overall, our data suggest that perturbing the physiologic catabolism of sphingomyelin by inhibiting nSMase reorganizes plasma membrane associated sphingolipids, alters the profile of neuron-generated EVs, and promotes neurodegeneration in vitro and in vivo by shifting the balance of pro-survival versus -degenerative EVs. Video Abstract.


Assuntos
Esfingomielina Fosfodiesterase , Esfingomielinas , Camundongos , Animais , Humanos , Esfingomielina Fosfodiesterase/metabolismo , Anexina A5 , Espécies Reativas de Oxigênio/metabolismo , Fosfatidilserinas , Ceramidas/metabolismo , Células Ganglionares da Retina/metabolismo
5.
Mol Cell Proteomics ; 20: 100131, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34455105

RESUMO

Stress and injury to the retinal pigment epithelium (RPE) often lead to dedifferentiation and epithelial-to-mesenchymal transition (EMT). These processes have been implicated in several retinal diseases, including proliferative vitreoretinopathy, diabetic retinopathy, and age-related macular degeneration. Despite the importance of RPE-EMT and the large body of data characterizing malignancy-related EMT, comprehensive proteomic studies to define the protein changes and pathways underlying RPE-EMT have not been reported. This study sought to investigate the temporal protein expression changes that occur in a human-induced pluripotent stem cell-based RPE-EMT model. We utilized multiplexed isobaric tandem mass tag labeling followed by high-resolution tandem MS for precise and in-depth quantification of the RPE-EMT proteome. We have identified and quantified 7937 protein groups in our tandem mass tag-based MS analysis. We observed a total of 532 proteins that are differentially regulated during RPE-EMT. Furthermore, we integrated our proteomic data with prior transcriptomic (RNA-Seq) data to provide additional insights into RPE-EMT mechanisms. To validate these results, we have performed a label-free single-shot data-independent acquisition MS study. Our integrated analysis indicates both the commonality and uniqueness of RPE-EMT compared with malignancy-associated EMT. Our comparative analysis also revealed that multiple age-related macular degeneration-associated risk factors are differentially regulated during RPE-EMT. Together, our integrated dataset provides a comprehensive RPE-EMT atlas and resource for understanding the molecular signaling events and associated biological pathways that underlie RPE-EMT onset. This resource has already facilitated the identification of chemical modulators that could inhibit RPE-EMT, and it will hopefully aid in ongoing efforts to develop EMT inhibition as an approach for the treatment of retinal disease.


Assuntos
Transição Epitelial-Mesenquimal , Epitélio Pigmentado da Retina/metabolismo , Carcinogênese , Células Cultivadas , Técnicas de Cocultura , Células-Tronco Embrionárias , Humanos , Células-Tronco Pluripotentes Induzidas , Proteoma
6.
Proc Natl Acad Sci U S A ; 117(52): 33597-33607, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33318207

RESUMO

Axon injury is a hallmark of many neurodegenerative diseases, often resulting in neuronal cell death and functional impairment. Dual leucine zipper kinase (DLK) has emerged as a key mediator of this process. However, while DLK inhibition is robustly protective in a wide range of neurodegenerative disease models, it also inhibits axonal regeneration. Indeed, there are no genetic perturbations that are known to both improve long-term survival and promote regeneration. To identify such a neuroprotective target, we conducted a set of complementary high-throughput screens using a protein kinase inhibitor library in human stem cell-derived retinal ganglion cells (hRGCs). Overlapping compounds that promoted both neuroprotection and neurite outgrowth were bioinformatically deconvoluted to identify specific kinases that regulated neuronal death and axon regeneration. This work identified the role of germinal cell kinase four (GCK-IV) kinases in cell death and additionally revealed their unexpected activity in suppressing axon regeneration. Using an adeno-associated virus (AAV) approach, coupled with genome editing, we validated that GCK-IV kinase knockout improves neuronal survival, comparable to that of DLK knockout, while simultaneously promoting axon regeneration. Finally, we also found that GCK-IV kinase inhibition also prevented the attrition of RGCs in developing retinal organoid cultures without compromising axon outgrowth, addressing a major issue in the field of stem cell-derived retinas. Together, these results demonstrate a role for the GCK-IV kinases in dissociating the cell death and axonal outgrowth in neurons and their druggability provides for therapeutic options for neurodegenerative diseases.


Assuntos
Axônios/enzimologia , Axônios/patologia , Sistema Nervoso Central/patologia , Quinases do Centro Germinativo/metabolismo , Regeneração Nervosa , Animais , Sequência de Bases , Sistemas CRISPR-Cas/genética , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dependovirus/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos Endogâmicos C57BL , Regeneração Nervosa/efeitos dos fármacos , Crescimento Neuronal/efeitos dos fármacos , Traumatismos do Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/patologia , Organoides/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
Int J Mol Sci ; 24(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37762022

RESUMO

A major risk factor for glaucomatous optic neuropathy is the level of intraocular pressure (IOP), which can lead to retinal ganglion cell axon injury and cell death. The optic nerve has a rostral unmyelinated portion at the optic nerve head followed by a caudal myelinated region. The unmyelinated region is differentially susceptible to IOP-induced damage in rodent models and human glaucoma. While several studies have analyzed gene expression changes in the mouse optic nerve following optic nerve injury, few were designed to consider the regional gene expression differences that exist between these distinct areas. We performed bulk RNA-sequencing on the retina and separately micro-dissected unmyelinated and myelinated optic nerve regions from naïve C57BL/6 mice, mice after optic nerve crush, and mice with microbead-induced experimental glaucoma (total = 36). Gene expression patterns in the naïve unmyelinated optic nerve showed significant enrichment of the Wnt, Hippo, PI3K-Akt, and transforming growth factor ß pathways, as well as extracellular matrix-receptor and cell membrane signaling pathways, compared to the myelinated optic nerve and retina. Gene expression changes induced by both injuries were more extensive in the myelinated optic nerve than the unmyelinated region, and greater after nerve crush than glaucoma. Changes present three and fourteen days after injury largely subsided by six weeks. Gene markers of reactive astrocytes did not consistently differ between injury states. Overall, the transcriptomic phenotype of the mouse unmyelinated optic nerve was significantly different from immediately adjacent tissues, likely dominated by expression in astrocytes, whose junctional complexes are inherently important in responding to IOP elevation.


Assuntos
Glaucoma , Disco Óptico , Humanos , Camundongos , Animais , Disco Óptico/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Endogâmicos C57BL , Glaucoma/genética , Glaucoma/metabolismo , Retina/metabolismo , Nervo Óptico/metabolismo , Pressão Intraocular , Compressão Nervosa , Expressão Gênica , Modelos Animais de Doenças
8.
J Lipid Res ; 63(8): 100247, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35764123

RESUMO

Phosphatidic acid is a key signaling molecule heavily implicated in exocytosis due to its protein-binding partners and propensity to induce negative membrane curvature. One phosphatidic acid-producing enzyme, phospholipase D (PLD), has also been implicated in neurotransmission. Unfortunately, due to the unreliability of reagents, there has been confusion in the literature regarding the expression of PLD isoforms in the mammalian brain which has hampered our understanding of their functional roles in neurons. To address this, we generated epitope-tagged PLD1 and PLD2 knockin mice using CRISPR/Cas9. Using these mice, we show that PLD1 and PLD2 are both localized at synapses by adulthood, with PLD2 expression being considerably higher in glial cells and PLD1 expression predominating in neurons. Interestingly, we observed that only PLD1 is expressed in the mouse retina, where it is found in the synaptic plexiform layers. These data provide critical information regarding the localization and potential role of PLDs in the central nervous system.


Assuntos
Fosfolipase D , Animais , Encéfalo , Camundongos , Ácidos Fosfatídicos , Isoformas de Proteínas , Retina
9.
Development ; 146(1)2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30567931

RESUMO

Numerous protocols have been described for producing neural retina from human pluripotent stem cells (hPSCs), many of which are based on the culture of 3D organoids. Although nearly all such methods yield at least partial segments of retinal structure with a mature appearance, variabilities exist within and between organoids that can change over a protracted time course of differentiation. Adding to this complexity are potential differences in the composition and configuration of retinal organoids when viewed across multiple differentiations and hPSC lines. In an effort to understand better the current capabilities and limitations of these cultures, we generated retinal organoids from 16 hPSC lines and monitored their appearance and structural organization over time by light microscopy, immunocytochemistry, metabolic imaging and electron microscopy. We also employed optical coherence tomography and 3D imaging techniques to assess and compare whole or broad regions of organoids to avoid selection bias. Results from this study led to the development of a practical staging system to reduce inconsistencies in retinal organoid cultures and increase rigor when utilizing them in developmental studies, disease modeling and transplantation.


Assuntos
Organoides/citologia , Células-Tronco Pluripotentes/citologia , Retina/citologia , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Forma Celular , Células Ependimogliais/citologia , Células Ependimogliais/metabolismo , Humanos , Interneurônios/citologia , Interneurônios/metabolismo , Modelos Biológicos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/ultraestrutura , Reprodutibilidade dos Testes , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Sinapses/metabolismo , Tomografia de Coerência Óptica
10.
Nano Lett ; 21(13): 5697-5705, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34228937

RESUMO

Polyelectrolyte complex particles assembled from plasmid DNA (pDNA) and poly(ethylenimine) (PEI) have been widely used to produce lentiviral vectors (LVVs) for gene therapy. The current batch-mode preparation for pDNA/PEI particles presents limited reproducibility in large-scale LVV manufacturing processes, leading to challenges in tightly controlling particle stability, transfection outcomes, and LVV production yield. Here we identified the size of pDNA/PEI particles as a key determinant for a high transfection efficiency with an optimal size of 400-500 nm, due to a cellular-uptake-related mechanism. We developed a kinetics-based approach to assemble size-controlled and shelf-stable particles using preassembled nanoparticles as building blocks and demonstrated production scalability on a scale of at least 100 mL. The preservation of colloidal stability and transfection efficiency was benchmarked against particles generated using an industry standard protocol. This particle manufacturing method effectively streamlines the viral manufacturing process and improves the production quality and consistency.


Assuntos
DNA , Polietilenoimina , DNA/genética , Tamanho da Partícula , Plasmídeos/genética , Reprodutibilidade dos Testes , Transfecção
11.
Acta Neuropathol ; 142(5): 899-915, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34487221

RESUMO

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) characterized by varying degrees of secondary neurodegeneration. Retinal ganglion cells (RGC) are lost in MS in association with optic neuritis but the mechanisms of neuronal injury remain unclear. Complement component C3 has been implicated in retinal and cerebral synaptic pathology that may precede neurodegeneration. Herein, we examined post-mortem MS retinas, and then used a mouse model, experimental autoimmune encephalomyelitis (EAE), to examine the role of C3 in the pathogenesis of RGC loss associated with optic neuritis. First, we show extensive C3 expression in astrocytes (C3+/GFAP+ cells) and significant RGC loss (RBPMS+ cells) in post-mortem retinas from people with MS compared to retinas from non-MS individuals. A patient with progressive MS with a remote history of optic neuritis showed marked reactive astrogliosis with C3 expression in the inner retina extending into deeper layers in the affected eye more than the unaffected eye. To study whether C3 mediates retinal degeneration, we utilized global C3-/- EAE mice and found that they had less RGC loss and partially preserved neurites in the retina compared with C3+/+ EAE mice. C3-/- EAE mice had fewer axonal swellings in the optic nerve, reflecting reduced axonal injury, but had no changes in demyelination or T cell infiltration into the CNS. Using a C3-tdTomato reporter mouse line, we show definitive evidence of C3 expression in astrocytes in the retina and optic nerves of EAE mice. Conditional deletion of C3 in astrocytes showed RGC protection replicating the effects seen in the global knockouts. These data implicate astrocyte C3 expression as a critical mediator of retinal neuronal pathology in EAE and MS, and are consistent with recent studies showing C3 gene variants are associated with faster rates of retinal neurodegeneration in human disease.


Assuntos
Complemento C3/metabolismo , Esclerose Múltipla/patologia , Doenças Neuroinflamatórias/patologia , Células Ganglionares da Retina/patologia , Animais , Astrócitos/imunologia , Astrócitos/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Humanos , Camundongos , Esclerose Múltipla/imunologia , Degeneração Neural/imunologia , Degeneração Neural/patologia , Doenças Neuroinflamatórias/imunologia , Nervo Óptico/patologia , Neurite Óptica/imunologia , Neurite Óptica/patologia
12.
PLoS Comput Biol ; 15(8): e1007040, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31469823

RESUMO

Single-cell RNA-sequencing (scRNA-seq) provides new opportunities to gain a mechanistic understanding of many biological processes. Current approaches for single cell clustering are often sensitive to the input parameters and have difficulty dealing with cell types with different densities. Here, we present Panoramic View (PanoView), an iterative method integrated with a novel density-based clustering, Ordering Local Maximum by Convex hull (OLMC), that uses a heuristic approach to estimate the required parameters based on the input data structures. In each iteration, PanoView will identify the most confident cell clusters and repeat the clustering with the remaining cells in a new PCA space. Without adjusting any parameter in PanoView, we demonstrated that PanoView was able to detect major and rare cell types simultaneously and outperformed other existing methods in both simulated datasets and published single-cell RNA-sequencing datasets. Finally, we conducted scRNA-Seq analysis of embryonic mouse hypothalamus, and PanoView was able to reveal known cell types and several rare cell subpopulations.


Assuntos
Algoritmos , Análise de Sequência de RNA/estatística & dados numéricos , Animais , Análise por Conglomerados , Biologia Computacional , Simulação por Computador , Bases de Dados de Ácidos Nucleicos/estatística & dados numéricos , Hipotálamo/citologia , Hipotálamo/embriologia , Hipotálamo/metabolismo , Camundongos , Análise de Célula Única/estatística & dados numéricos
14.
Exp Eye Res ; 171: 54-61, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29526794

RESUMO

Optic neuropathies such as glaucoma are characterized by the degeneration of retinal ganglion cells (RGCs) and the irreversible loss of vision. In these diseases, focal axon injury triggers a propagating axon degeneration and, eventually, cell death. Previous work by us and others identified dual leucine zipper kinase (DLK) and JUN N-terminal kinase (JNK) as key mediators of somal cell death signaling in RGCs following axonal injury. Moreover, others have shown that activation of the DLK/JNK pathway contributes to distal axonal degeneration in some neuronal subtypes and that this activation is dependent on the adaptor protein, sterile alpha and TIR motif containing 1 (SARM1). Given that SARM1 acts upstream of DLK/JNK signaling in axon degeneration, we tested whether SARM1 plays a similar role in RGC somal apoptosis in response to optic nerve injury. Using the mouse optic nerve crush (ONC) model, our results show that SARM1 is critical for RGC axonal degeneration and that axons rescued by SARM1 deficiency are electrophysiologically active. Genetic deletion of SARM1 did not, however, prevent DLK/JNK pathway activation in RGC somas nor did it prevent or delay RGC cell death. These results highlight the importance of SARM1 in RGC axon degeneration and suggest that somal activation of the DLK/JNK pathway is activated by an as-yet-unidentified SARM1-independent signal.


Assuntos
Proteínas do Domínio Armadillo/fisiologia , Axônios/metabolismo , Proteínas do Citoesqueleto/fisiologia , Modelos Animais de Doenças , Traumatismos do Nervo Óptico/metabolismo , Receptores do Fator de Necrose Tumoral/fisiologia , Degeneração Retiniana/metabolismo , Células Ganglionares da Retina/metabolismo , Animais , Apoptose/fisiologia , Axônios/patologia , Contagem de Células , Sobrevivência Celular , Eletrofisiologia , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Compressão Nervosa , Traumatismos do Nervo Óptico/patologia , Degeneração Retiniana/patologia , Células Ganglionares da Retina/patologia
15.
Mol Ther ; 25(7): 1697-1709, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28479046

RESUMO

There is a need for new tools to better quantify intracellular delivery barriers in high-throughput and high-content ways. Here, we synthesized a triple-fluorophore-labeled nucleic acid pH nanosensor for measuring intracellular pH of exogenous DNA at specific time points in a high-throughput manner by flow cytometry following non-viral transfection. By including two pH-sensitive fluorophores and one pH-insensitive fluorophore in the nanosensor, detection of pH was possible over the full physiological range. We further assessed possible correlation between intracellular pH of delivered DNA, cellular uptake of DNA, and DNA reporter gene expression at 24 hr post-transfection for poly-L-lysine and branched polyethylenimine polyplex nanoparticles. While successful transfection was shown to clearly depend on median cellular pH of delivered DNA at the cell population level, surprisingly, on an individual cell basis, there was no significant correlation between intracellular pH and transfection efficacy. To our knowledge, this is the first reported instance of high-throughput single-cell analysis between cellular uptake of DNA, intracellular pH of delivered DNA, and gene expression of the delivered DNA. Using the nanosensor, we demonstrate that the ability of polymeric nanoparticles to avoid an acidic environment is necessary, but not sufficient, for successful transfection.


Assuntos
Técnicas Biossensoriais/métodos , DNA/química , Corantes Fluorescentes/química , Técnicas de Transferência de Genes , Nanopartículas/química , Coloração e Rotulagem/métodos , Animais , Carbocianinas/química , Ácidos Carboxílicos/química , DNA/genética , DNA/metabolismo , Citometria de Fluxo/métodos , Fluoresceína/química , Expressão Gênica , Genes Reporter , Humanos , Concentração de Íons de Hidrogênio , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Tamanho da Partícula , Polietilenoimina/química , Polilisina/química , Análise de Célula Única/métodos
16.
Adv Exp Med Biol ; 1074: 351-357, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721963

RESUMO

c-Jun N-terminal kinase (JNK), a member of stress-induced mitogen-activated protein (MAP) kinase family, has been shown to modulate a variety of biological processes associated with neurodegenerative pathology of the retina. In particular, various retinal cell culture and animal models related to glaucoma, age-related macular degeneration (AMD), and retinitis pigmentosa indicate that JNK signaling may contribute to disease pathogenesis. This mini-review discusses the impact of JNK signaling in retinal disease, with a focus on retinal ganglion cells (RGCs), photoreceptor cells, retinal pigment epithelial (RPE) cells, and animal studies, with particular attention to modulation of JNK signaling as a potential therapeutic target for the treatment of retinal disease.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Sistema de Sinalização das MAP Quinases , Degeneração Retiniana/enzimologia , Transtornos da Visão/enzimologia , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica/fisiologia , Glaucoma/enzimologia , Glaucoma/genética , Glaucoma/fisiopatologia , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/deficiência , Degeneração Macular/enzimologia , Degeneração Macular/genética , Degeneração Macular/fisiopatologia , Camundongos , Terapia de Alvo Molecular , Células Fotorreceptoras de Vertebrados/enzimologia , Células Fotorreceptoras de Vertebrados/fisiologia , Degeneração Retiniana/genética , Degeneração Retiniana/terapia , Epitélio Pigmentado da Retina/enzimologia , Epitélio Pigmentado da Retina/fisiologia , Transtornos da Visão/genética , Transtornos da Visão/terapia
17.
Proc Natl Acad Sci U S A ; 112(35): 10950-5, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26269569

RESUMO

Age-related macular degeneration (AMD) is associated with dysfunction and death of retinal pigment epithelial (RPE) cells. Cell-based approaches using RPE-like cells derived from human pluripotent stem cells (hPSCs) are being developed for AMD treatment. However, most efficient RPE differentiation protocols rely on complex, stepwise treatments and addition of growth factors, whereas small-molecule-only approaches developed to date display reduced yields. To identify new compounds that promote RPE differentiation, we developed and performed a high-throughput quantitative PCR screen complemented by a novel orthogonal human induced pluripotent stem cell (hiPSC)-based RPE reporter assay. Chetomin, an inhibitor of hypoxia-inducible factors, was found to strongly increase RPE differentiation; combination with nicotinamide resulted in conversion of over one-half of the differentiating cells into RPE. Single passage of the whole culture yielded a highly pure hPSC-RPE cell population that displayed many of the morphological, molecular, and functional characteristics of native RPE.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos , Epitélio Pigmentado da Retina/citologia , Ensaios de Triagem em Larga Escala , Humanos , Células-Tronco Pluripotentes/citologia , Reação em Cadeia da Polimerase
18.
Ophthalmology ; 124(7): 926-934, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28365209

RESUMO

The National Eye Institute launched the Audacious Goals Initiative (AGI) in 2013 with the aim "to restore vision through the regeneration of neurons and neural connections in the eye and visual system." An AGI Town Hall held at the Association for Research in Vision and Ophthalmology Annual Meeting in 2016 brought together basic, translational, and clinical scientists to address the clinical implications of the AGI, with a particular emphasis on diseases amenable to regenerative medicine and strategies to deal with barriers to progess. An example of such a barrier is that replacement of lost neurons may be insufficient because damage to other neurons and non-neuronal cells is common in retinal and optic nerve disease. Reparative processes such as gliosis and fibrosis also can make it difficult to replenish and regenerate neurons. Other issues include choice of animal models, selecting appropriate endpoints, ethics of informed consent, and regulatory issues. Another area critical to next steps in the AGI is the choice of target diseases and the stage at which early development studies should be focused. For example, an advantage of doing clinical trials in patients with early disease is that supporting cellular and structural constituents are still likely to be present. However, regenerative studies in patients with late disease make it easier to detect the effects of replacement therapy against the background of severe visual loss, whereas it may be harder to detect incremental improvement in visual function in those with early disease and considerable remaining visual function. Achieving the goals of the AGI also requires preclinical advances, new imaging techniques, and optimizing translational issues. The work of the AGI is expected to take at least 10 years but should eventually result in therapies to restore some degree of vision to the blind.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/tendências , Objetivos , Oftalmologia/métodos , Doenças do Nervo Óptico/terapia , Animais , Humanos , National Eye Institute (U.S.) , Estados Unidos
19.
Hum Mol Genet ; 23(21): 5827-37, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24899048

RESUMO

Neurodegenerative diseases affecting the macula constitute a major cause of incurable vision loss and exhibit considerable clinical and genetic heterogeneity, from early-onset monogenic disease to multifactorial late-onset age-related macular degeneration (AMD). As part of our continued efforts to define genetic causes of macular degeneration, we performed whole exome sequencing in four individuals of a two-generation family with autosomal dominant maculopathy and identified a rare variant p.Glu1144Lys in Fibrillin 2 (FBN2), a glycoprotein of the elastin-rich extracellular matrix (ECM). Sanger sequencing validated the segregation of this variant in the complete pedigree, including two additional affected and one unaffected individual. Sequencing of 192 maculopathy patients revealed additional rare variants, predicted to disrupt FBN2 function. We then undertook additional studies to explore the relationship of FBN2 to macular disease. We show that FBN2 localizes to Bruch's membrane and its expression appears to be reduced in aging and AMD eyes, prompting us to examine its relationship with AMD. We detect suggestive association of a common FBN2 non-synonymous variant, rs154001 (p.Val965Ile) with AMD in 10 337 cases and 11 174 controls (OR = 1.10; P-value = 3.79 × 10(-5)). Thus, it appears that rare and common variants in a single gene--FBN2--can contribute to Mendelian and complex forms of macular degeneration. Our studies provide genetic evidence for a key role of elastin microfibers and Bruch's membrane in maintaining blood-retina homeostasis and establish the importance of studying orphan diseases for understanding more common clinical phenotypes.


Assuntos
Estudos de Associação Genética , Variação Genética , Degeneração Macular/genética , Proteínas dos Microfilamentos/genética , Adulto , Idoso , Sequência de Aminoácidos , Lâmina Basilar da Corioide/metabolismo , Análise Mutacional de DNA , Exoma , Matriz Extracelular/metabolismo , Fibrilina-2 , Fibrilinas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Degeneração Macular/diagnóstico , Masculino , Metanálise como Assunto , Proteínas dos Microfilamentos/metabolismo , Pessoa de Meia-Idade , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Linhagem , Conformação Proteica , Estabilidade Proteica , Retina/metabolismo , Retina/patologia , Alinhamento de Sequência
20.
Development ; 140(6): 1330-41, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23406904

RESUMO

Dysfunction or death of photoreceptors is the primary cause of vision loss in retinal and macular degenerative diseases. As photoreceptors have an intimate relationship with the retinal pigment epithelium (RPE) for exchange of macromolecules, removal of shed membrane discs and retinoid recycling, an improved understanding of the development of the photoreceptor-RPE complex will allow better design of gene- and cell-based therapies. To explore the epigenetic contribution to retinal development we generated conditional knockout alleles of DNA methyltransferase 1 (Dnmt1) in mice. Conditional Dnmt1 knockdown in early eye development mediated by Rx-Cre did not produce lamination or cell fate defects, except in cones; however, the photoreceptors completely lacked outer segments despite near normal expression of phototransduction and cilia genes. We also identified disruption of RPE morphology and polarization as early as E15.5. Defects in outer segment biogenesis were evident with Dnmt1 exon excision only in RPE, but not when excision was directed exclusively to photoreceptors. We detected a reduction in DNA methylation of LINE1 elements (a measure of global DNA methylation) in developing mutant RPE as compared with neural retina, and of Tuba3a, which exhibited dramatically increased expression in mutant retina. These results demonstrate a unique function of DNMT1-mediated DNA methylation in controlling RPE apicobasal polarity and neural retina differentiation. We also establish a model to study the epigenetic mechanisms and signaling pathways that guide the modulation of photoreceptor outer segment morphogenesis by RPE during retinal development and disease.


Assuntos
Permeabilidade da Membrana Celular/fisiologia , DNA (Citosina-5-)-Metiltransferases/genética , Morfogênese/genética , Segmento Externo das Células Fotorreceptoras da Retina/fisiologia , Epitélio Pigmentado da Retina/fisiologia , Animais , Permeabilidade da Membrana Celular/genética , Polaridade Celular/genética , DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA/genética , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Transgênicos , Análise em Microsséries , Morfogênese/fisiologia , Especificidade de Órgãos/genética , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Epitélio Pigmentado da Retina/embriologia , Epitélio Pigmentado da Retina/crescimento & desenvolvimento , Epitélio Pigmentado da Retina/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA