Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Cell Biochem Funct ; 42(4): e4072, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39031589

RESUMO

Lung cancer holds the position of being the primary cause of cancer-related fatalities on a global scale. Furthermore, it exhibits the highest mortality rate among all types of cancer. The survival rate within a span of 5 years is less than 20%, primarily due to the fact that the disease is often diagnosed at an advanced stage, resulting in less effective treatment options compared to earlier stages. There are two main types of primary lung cancer: nonsmall-cell lung cancer, which accounts for approximately 80%-85% of all cases, and small-cell lung cancer, which is categorized based on the specific type of cells in which the cancer originates. The understanding of the biology of this disease and the identification of oncogenic driver alterations have significantly transformed the landscape of therapeutic approaches. Long noncoding RNAs (lncRNAs) play a crucial role in regulating various physiological and pathological processes through diverse molecular mechanisms. Among these lncRNAs, lncRNA H19, initially identified as an oncofetal transcript, has garnered significant attention due to its elevated expression in numerous tumors. Extensive research has confirmed its involvement in tumorigenesis and malignant progression by promoting cell growth, invasion, migration, epithelial-mesenchymal transition, metastasis, and therapy resistance. This comprehensive review aims to provide an overview of the aberrant overexpression of lncRNA H19 and the molecular pathways through which it contributes to the advancement of lung cancer. The findings of this review highlight the potential for further investigation into the diagnosis and treatment of this disease, offering promising avenues for future research.


Assuntos
Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/diagnóstico , Transição Epitelial-Mesenquimal , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Regulação Neoplásica da Expressão Gênica
2.
Med Oncol ; 41(8): 201, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001987

RESUMO

Pancreatic cancer remains a significant health issue with limited treatment options. The tumor stroma, a complex environment made up of different cells and proteins, plays a crucial role in tumor growth and chemoresistance. Targeting tumor stroma, consisting of diverse non-tumor cells such as fibroblasts, extracellular matrix (ECM), immune cells, and also pre-vascular cells is encouraging for remodeling solid cancers, such as pancreatic cancer. Remodeling the stroma of pancreas tumors can be suggested as a strategy for reducing resistance to chemo/immunotherapy. Several studies have shown that phytochemicals from plants can affect the tumor environment and have anti-cancer properties. By targeting key pathways involved in stromal activation, phytochemicals may disrupt communication between the tumor and stroma and make tumor cells more sensitive to different treatments. Additionally, phytochemicals have immunomodulatory and anti-angiogenic properties, all of which contribute to their potential in treating pancreatic cancer. This review will provide a detailed look at how phytochemicals impact the tumor stroma and their effects on pancreatic tumor growth, spread, and response to treatment. It will also explore the potential of combining phytochemicals with other treatment options like chemotherapy, immunotherapy, and radiation.


Assuntos
Neoplasias Pancreáticas , Compostos Fitoquímicos , Microambiente Tumoral , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Microambiente Tumoral/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Animais , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Nanopartículas
3.
Heliyon ; 10(14): e34619, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39149004

RESUMO

Heavy metals can cause serious environmental and human health problems, and their removal from wastewater is critical to protect our planet and communities. This study investigated the ability of crushed pomegranate peel to remove mercury and cadmium ions from contaminated water as a function of different experimental parameters. The experimental results showed that the pH of the solution influenced the adsorptive removal of heavy metals, with the best performance observed at pH 4.8. Optimization studies and process balance modeling were performed to optimize the process for commercial use. The performance of pomegranate peel was compared with that of other materials, and the highest adsorption capacities for both cadmium (Ca (II)) and mercury (Hg (II)) ions were observed to be 89.59 and 42.125 mg/g, respectively. The results were interpreted using the Langmuir model, which provided the best fit to describe the behavior of the process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA