Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS ES T Eng ; 3(10): 1424-1467, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37854077

RESUMO

Municipal and agricultural organic waste can be treated to recover energy, nutrients, and carbon through resource recovery and carbon capture (RRCC) technologies such as anaerobic digestion, struvite precipitation, and pyrolysis. Data science could benefit such technologies by improving their efficiency through data-driven process modeling along with reducing environmental and economic burdens via life cycle assessment (LCA) and techno-economic analysis (TEA), respectively. We critically reviewed 616 peer-reviewed articles on the use of data science in RRCC published during 2002-2022. Although applications of machine learning (ML) methods have drastically increased over time for modeling RRCC technologies, the reviewed studies exhibited significant knowledge gaps at various model development stages. In terms of sustainability, an increasing number of studies included LCA with TEA to quantify both environmental and economic impacts of RRCC. Integration of ML methods with LCA and TEA has the potential to cost-effectively investigate the trade-off between efficiency and sustainability of RRCC, although the literature lacked such integration of techniques. Therefore, we propose an integrated data science framework to inform efficient and sustainable RRCC from organic waste based on the review. Overall, the findings from this review can inform practitioners about the effective utilization of various data science methods for real-world implementation of RRCC technologies.

2.
Heliyon ; 8(12): e11962, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36578421

RESUMO

Researchers are searching for ways to better quantify methane emissions from natural gas infrastructure. Current indirect quantification techniques (IQTs) allow for more frequent or continuous measurements with fewer personnel resources than direct methods but lack accuracy and repeatability. Two IQTs are Other Test Method (OTM) 33A and Eddy Covariance (EC). We examined a novel approach to improve the accuracy of single sensor IQT whereby the results from both OTM and EC were combined with two machine learning (ML) models, a random forest (RF) and a neural network (NN). Then, models were enhanced with feature reduction and hyper-parameter tuning and compared to traditional quantification methods. The NN and RF improved upon the default OTM by an average of 44% and 78%, respectively. When compared to traditional OTM estimates with low Data Quality Indicators (DQIs), RF and NN models reduced 1σ errors from ±66% to ±13% and ±34%, respectively. Models also reduced the standard deviation of estimates with 93% and 85% of estimates falling within ±50% of the known release rate. This approach can be deployed with single sensor systems at well sites to improve confidence in reported emissions, reducing the number of anomalous overestimates that would trigger unnecessary site evaluations. Additional improvements could be realized by expanding training datasets with more methane release rates. Further, deployment of such models in a variety of situations could enhance their ability help close the gap between bottom-up inventory and top-down studies by enabling continuous monitoring of temporal emissions that could identify with improved confidence, atypically higher emissions. Accurate remote single sensor systems are key in developing an improved understanding of methane emissions to enable industry to identify and reduce methane emissions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA