Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cancer ; 126(21): 4678-4686, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32875577

RESUMO

The p53 tumor suppressor transcriptionally regulates a myriad of genes involved in cell cycle control, DNA repair, cell survival, and cell metabolism and represents one of the most well-studied inhibitors of tumorigenesis. Since the discovery of TP53 in 1979, somatic mutations have been shown to be extremely common; more than 50% of human cancers carry loss-of-function mutations in TP53. Inherited or germline TP53 mutations are rare and are involved in complex hereditary cancer predisposition disorders, and affected family members can develop diverse tumor types and multiple primary cancers at young ages. In Brazil, a fascinating history of p53 and cancer predisposition began in the year 2000 with identification of the TP53 p.R337H mutation in close association with the development of adrenocortical tumors. In these past 20 years, much has been learned about the genetics and biochemistry of this mutation, which is widespread in Brazil because of a founder effect. This review highlights the contributions of TP53 p.R337H research over the last 20 years, the findings of which have sparked passionate debate among researchers worldwide, to understanding cancer predisposition in Brazilian individuals and families.


Assuntos
Proteína Supressora de Tumor p53/genética , Humanos , Mutação , Fatores de Tempo
2.
Acta Neuropathol ; 136(2): 315-326, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29428974

RESUMO

Multifocal synchronous or metachronous atypical teratoid rhabdoid tumors (ATRTs) and non-central nervous system malignant rhabdoid tumors (extra-CNS MRTs) are rare cancers. We reviewed the clinical and radiologic characteristics of affected patients seen at our institution. Genotyping and analysis of copy number abnormalities (CNAs) in SMARCB1 were performed in germline and tumor samples. Tumor samples underwent genome-wide DNA methylation and CNA analysis. The median age at diagnosis of 21 patients was 0.6 years. Two-thirds of ATRTs and extra-CNS MRTs were diagnosed synchronously. Although kidney tumors predominated, including two patients with bilateral involvement, at least 30% of cases lacked renal involvement. Histopathologic review confirmed MRTs in all cases and INI1 expression loss in all tumors tested. Fourteen (78%) of 18 patients tested had heterozygous germline SMARCB1 abnormalities. At least one allelic SMARCB1 abnormality was confirmed in 81 and 88% of ATRTs and extra-CNS MRTs, respectively. Unsupervised hierarchical clustering analysis of DNA methylation in 27 tumors and comparison with a reference group of 150 ATRTs classified the CNS tumors (n = 14) as sonic hedgehog (64%), tyrosinase (21%), and MYC (14%). The MYC subgroup accounted for 85% of 13 extra-CNS MRTs. Of 16 paired ATRTs and extra-CNS MRTs, the tumors in seven of eight patients showed a different pattern of genome-wide DNA methylation and/or CNAs suggestive of non-clonal origin. CNS and extra-CNS tumors had an identical SMARCB1 amplification (n = 1) or very similar DNA methylation pattern (n = 1) suggestive of clonal origin. All patients died of tumor progression. The clinical and molecular characteristics of multifocal ATRTs and extra-CNS MRTs are heterogeneous with most patients harboring a cancer predisposition. Although independent tumor origin was confirmed in most cases, metastatic spread was also documented. The recognition of their distinct molecular characteristics is critical in selecting new biologic therapies against these deadly cancers.


Assuntos
Neoplasias do Sistema Nervoso Central/genética , Mutação/genética , Tumor Rabdoide/genética , Proteína SMARCB1/genética , Neoplasias do Sistema Nervoso Central/diagnóstico por imagem , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Reação em Cadeia da Polimerase Multiplex , Estudos Retrospectivos , Tumor Rabdoide/diagnóstico por imagem , Tomógrafos Computadorizados
3.
Mol Cell ; 36(3): 487-99, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19917256

RESUMO

While activation of BAX/BAK by BH3-only molecules (BH3s) is essential for mitochondrial apoptosis, the underlying mechanisms remain unsettled. Here we demonstrate that BAX undergoes stepwise structural reorganization leading to mitochondrial targeting and homo-oligomerization. The alpha1 helix of BAX keeps the alpha9 helix engaged in the dimerization pocket, rendering BAX as a monomer in cytosol. The activator BH3s, tBID/BIM/PUMA, attack and expose the alpha1 helix of BAX, resulting in secondary disengagement of the alpha9 helix and thereby mitochondrial insertion. Activator BH3s remain associated with the N-terminally exposed BAX through the BH1 domain to drive homo-oligomerization. BAK, an integral mitochondrial membrane protein, has bypassed the first activation step, explaining why its killing kinetics are faster than those of BAX. Furthermore, death signals initiated at ER induce BIM and PUMA to activate mitochondrial apoptosis. Accordingly, deficiency of Bim/Puma impedes ER stress-induced BAX/BAK activation and apoptosis. Our study provides mechanistic insights regarding the spatiotemporal execution of BAX/BAK-governed cell death.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Proteína 11 Semelhante a Bcl-2 , Células Cultivadas , Etoposídeo/farmacologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Immunoblotting , Imunoprecipitação , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Modelos Biológicos , Mutação , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica , Proteínas Proto-Oncogênicas/genética , Estaurosporina/farmacologia , Tapsigargina/farmacologia , Proteínas Supressoras de Tumor/genética , Tunicamicina/farmacologia , Proteína Killer-Antagonista Homóloga a bcl-2/química , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/química , Proteína X Associada a bcl-2/genética
4.
J Biol Chem ; 289(7): 4083-94, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24366874

RESUMO

Under conditions of DNA damage, the mammalian target of rapamycin complex 1 (mTORC1) is inhibited, preventing cell cycle progression and conserving cellular energy by suppressing translation. We show that suppression of mTORC1 signaling to 4E-BP1 requires the coordinated activity of two tumor suppressors, p53 and p63. In contrast, suppression of S6K1 and ribosomal protein S6 phosphorylation by DNA damage is Akt-dependent. We find that loss of either p53, required for the induction of Sestrin 1/2, or p63, required for the induction of REDD1 and activation of the tuberous sclerosis complex, prevents the DNA damage-induced suppression of mTORC1 signaling. These data indicate that the negative regulation of cap-dependent translation by mTORC1 inhibition subsequent to DNA damage is abrogated in most human cancers.


Assuntos
Dano ao DNA , Complexos Multiproteicos/metabolismo , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Complexos Multiproteicos/genética , Neoplasias/genética , Neoplasias/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/genética , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética
5.
J Biol Chem ; 288(29): 21307-21319, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23720736

RESUMO

Osteosarcoma (OS) is a primary bone tumor that is most prevalent during adolescence. RUNX2, which stimulates differentiation and suppresses proliferation of osteoblasts, is deregulated in OS. Here, we define pathological roles of RUNX2 in the etiology of OS and mechanisms by which RUNX2 expression is stimulated. RUNX2 is often highly expressed in human OS biopsies and cell lines. Small interference RNA-mediated depletion of RUNX2 inhibits growth of U2OS OS cells. RUNX2 levels are inversely linked to loss of p53 (which predisposes to OS) in distinct OS cell lines and osteoblasts. RUNX2 protein levels decrease upon stabilization of p53 with the MDM2 inhibitor Nutlin-3. Elevated RUNX2 protein expression is post-transcriptionally regulated and directly linked to diminished expression of several validated RUNX2 targeting microRNAs in human OS cells compared with mesenchymal progenitor cells. The p53-dependent miR-34c is the most significantly down-regulated RUNX2 targeting microRNAs in OS. Exogenous supplementation of miR-34c markedly decreases RUNX2 protein levels, whereas 3'-UTR reporter assays establish RUNX2 as a direct target of miR-34c in OS cells. Importantly, Nutlin-3-mediated stabilization of p53 increases expression of miR-34c and decreases RUNX2. Thus, a novel p53-miR-34c-RUNX2 network controls cell growth of osseous cells and is compromised in OS.


Assuntos
Neoplasias Ósseas/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , MicroRNAs/metabolismo , Osteossarcoma/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Ciclo Celular/genética , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA , Regulação para Baixo/genética , Regulação para Baixo/efeitos da radiação , Raios gama , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Camundongos , Osteossarcoma/genética , Osteossarcoma/patologia , Estabilidade Proteica/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína Supressora de Tumor p14ARF/metabolismo , Proteína Supressora de Tumor p53/deficiência
6.
Blood ; 120(18): 3764-73, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22976955

RESUMO

Ribosomal protein (RP) mutations in diseases such as 5q- syndrome both disrupt hematopoiesis and increase the risk of developing hematologic malignancy. However, the mechanism by which RP mutations increase cancer risk has remained an important unanswered question. We show here that monoallelic, germline inactivation of the ribosomal protein L22 (Rpl22) predisposes T-lineage progenitors to transformation. Indeed, RPL22 was found to be inactivated in ∼ 10% of human T-acute lymphoblastic leukemias. Moreover, monoallelic loss of Rpl22 accelerates development of thymic lymphoma in both a mouse model of T-cell malignancy and in acute transformation assays in vitro. We show that Rpl22 inactivation enhances transformation potential through induction of the stemness factor, Lin28B. Our finding that Rpl22 inactivation promotes transformation by inducing expression of Lin28B provides the first insight into the mechanistic basis by which mutations in Rpl22, and perhaps some other RP genes, increases cancer risk.


Assuntos
Transformação Celular Neoplásica/genética , Proteínas de Ligação a DNA/metabolismo , Neoplasias Hematológicas/genética , Proteínas de Ligação a RNA/genética , Proteínas Ribossômicas/genética , Linfócitos T/metabolismo , Animais , Ensaio de Desvio de Mobilidade Eletroforética , Citometria de Fluxo , Inativação Gênica , Neoplasias Hematológicas/metabolismo , Humanos , Immunoblotting , Camundongos , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real
7.
Cancer Manag Res ; 16: 1141-1153, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39263332

RESUMO

Adrenocortical tumors (ACTs) are infrequent neoplasms in children and adolescents and are typically associated with clinical symptoms reflective of androgen overproduction. Pediatric ACTs typically occur in the context of a germline TP53 mutation, can be cured when diagnosed at an early stage, but are difficult to treat when advanced or associated with concurrent TP53 and ATRX alterations. Recent work has demonstrated DNA methylation patterns suggestive of prognostic significance. While current treatment standards rely heavily upon surgical resection, chemotherapy, and hormonal modulation, small cohort studies suggest promise for multi-tyrosine kinases targeting anti-angiogenic pathways or immunomodulatory therapies. Future work will focus on novel risk stratification algorithms and combination therapies intended to mitigate toxicity for patients with perceived low-risk disease while intensifying therapy or accelerating discoveries aimed at improving survival for patients with difficult-to-treat disease.

8.
Mol Cancer Ther ; 23(4): 478-491, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37988559

RESUMO

The histone lysine demethylases KDM4A-C are involved in physiologic processes including stem cell identity and self-renewal during development, DNA damage repair, and cell-cycle progression. KDM4A-C are overexpressed and associated with malignant cell behavior in multiple human cancers and are therefore potential therapeutic targets. Given the role of KDM4A-C in development and cancer, we aimed to test the potent, selective KDM4A-C inhibitor QC6352 on oncogenic cells of renal embryonic lineage. The anaplastic Wilms tumor cell line WiT49 and the tumor-forming human embryonic kidney cell line HEK293 demonstrated low nanomolar QC6352 sensitivity. The cytostatic response to QC6352 in WiT49 and HEK293 cells was marked by induction of DNA damage, a DNA repair-associated protein checkpoint response, S-phase cell-cycle arrest, profound reduction of ribosomal protein gene and rRNA transcription, and blockade of newly synthesized proteins. QC6352 caused reduction of KDM4A-C levels by a proteasome-associated mechanism. The cellular phenotype caused by QC6352 treatment of reduced migration, proliferation, tumor spheroid growth, DNA damage, and S-phase cell-cycle arrest was most closely mirrored by knockdown of KDM4A as determined by siRNA knockdown of KDM4A-C. QC6352 sensitivity correlated with high basal levels of ribosomal gene transcription in more than 900 human cancer cell lines. Targeting KDM4A may be of future therapeutic interest in oncogenic cells of embryonic renal lineage or cells with high basal expression of ribosomal protein genes.


Assuntos
Compostos Heterocíclicos de 4 ou mais Anéis , Histona Desmetilases com o Domínio Jumonji , Proteínas Ribossômicas , Humanos , Células HEK293 , Histona Desmetilases com o Domínio Jumonji/genética , Linhagem Celular Tumoral , Rim/metabolismo , Ribossomos/metabolismo
9.
HGG Adv ; 5(1): 100244, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37794678

RESUMO

The germline TP53 p.R337H mutation is reported as the most common germline TP53 variant. It exists at a remarkably high frequency in the population of southeast Brazil as founder mutation in two distinct haplotypes with the most frequent co-segregating with the p.E134∗ variant of the XAF1 tumor suppressor and an increased cancer risk. Founder mutations demonstrate linkage disequilibrium with neighboring genetic polymorphic markers that can be used to identify the founder variant in different geographic regions and diverse populations. We report here a shared haplotype among Brazilian, Portuguese, and Spanish families and the existence of three additional distinct TP53 p.R337H alleles. Mitochondrial DNA sequencing and Y-STR profiling of Brazilian carriers of the founder TP53 p.R337H allele reveal an excess of Native American haplogroups in maternal lineages and exclusively European haplogroups in paternal lineages, consistent with communities established through male European settlers with extensive intermarriage with Indigenous women. The identification of founder and independent TP53 p.R337H alleles underlines the importance for considering the haplotype as a functional unit and the additive effects of constitutive polymorphisms and associated variants in modifier genes that can influence the cancer phenotype.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Masculino , Feminino , Haplótipos/genética , Proteína Supressora de Tumor p53/genética , Neoplasias/genética , Mutação em Linhagem Germinativa/genética , Família
10.
Stem Cells ; 30(5): 888-97, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22311782

RESUMO

Reprogramming of the somatic state to pluripotency can be induced by a defined set of transcription factors including Oct3/4, Sox2, Klf4, and c-Myc [Cell 2006;126:663-676]. These induced pluripotent stem cells (iPSCs) hold great promise in human therapy and disease modeling. However, tumor suppressive activities of p53, which are necessary to prevent persistence of DNA damage in mammalian cells, have proven a serious impediment to formation of iPSCs [Nat Methods 2011;8:409-412]. We examined the requirement for downstream p53 activities in suppressing efficiency of reprogramming as well as preventing persistence of DNA damage into the early iPSCs. We discovered that the majority of the p53 activation occurred through early reprogramming-induced DNA damage with the activated expression of the apoptotic inducer Puma and the cell cycle inhibitor p21. While Puma deficiency increases reprogramming efficiency only in the absence of c-Myc, double deficiency of Puma and p21 has achieved a level of efficiency that exceeded that of p53 deficiency alone. We further demonstrated that, in both the presence and absence of p21, Puma deficiency was able to prevent any increase in persistent DNA damage in early iPSCs. This may be due to a compensatory cellular senescent response to reprogramming-induced DNA damage in pre-iPSCs. Therefore, our findings provide a potentially safe approach to enhance iPSC derivation by transiently silencing Puma and p21 without compromising genomic integrity.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Desdiferenciação Celular , Inativação Gênica , Células-Tronco Pluripotentes/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Células Cultivadas , Senescência Celular/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Dano ao DNA , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Células-Tronco Pluripotentes/citologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA