Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 3497, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715404

RESUMO

The balance between fast synchronous and delayed asynchronous release of neurotransmitters has a major role in defining computational properties of neuronal synapses and regulation of neuronal network activity. However, how it is tuned at the single synapse level remains poorly understood. Here, using the fluorescent glutamate sensor SF-iGluSnFR, we image quantal vesicular release in tens to hundreds of individual synaptic outputs from single pyramidal cells with 4 millisecond temporal and 75 nm spatial resolution. We find that the ratio between synchronous and asynchronous synaptic vesicle exocytosis varies extensively among synapses supplied by the same axon, and that the synchronicity of release is reduced at low release probability synapses. We further demonstrate that asynchronous exocytosis sites are more widely distributed within the release area than synchronous sites. Together, our results reveal a universal relationship between the two major functional properties of synapses - the timing and the overall efficacy of neurotransmitter release.


Assuntos
Ácido Glutâmico , Sinapses , Exocitose/fisiologia , Neurotransmissores , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
2.
ACS Synth Biol ; 10(5): 979-989, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33904719

RESUMO

Advances in microscopy, microfluidics, and optogenetics enable single-cell monitoring and environmental regulation and offer the means to control cellular phenotypes. The development of such systems is challenging and often results in bespoke setups that hinder reproducibility. To address this, we introduce Cheetah, a flexible computational toolkit that simplifies the integration of real-time microscopy analysis with algorithms for cellular control. Central to the platform is an image segmentation system based on the versatile U-Net convolutional neural network. This is supplemented with functionality to robustly count, characterize, and control cells over time. We demonstrate Cheetah's core capabilities by analyzing long-term bacterial and mammalian cell growth and by dynamically controlling protein expression in mammalian cells. In all cases, Cheetah's segmentation accuracy exceeds that of a commonly used thresholding-based method, allowing for more accurate control signals to be generated. Availability of this easy-to-use platform will make control engineering techniques more accessible and offer new ways to probe and manipulate living cells.


Assuntos
Sistemas Computacionais , Aprendizado Profundo , Escherichia coli/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Microscopia/métodos , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Linhagem Celular , Confiabilidade dos Dados , Dispositivos Lab-On-A-Chip , Camundongos , Reprodutibilidade dos Testes , Software , Biologia Sintética/métodos
3.
ACS Omega ; 6(4): 2473-2476, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33553865

RESUMO

Extracting quantitative measurements from time-lapse images is necessary in external feedback control applications, where segmentation results are used to inform control algorithms. We describe ChipSeg, a computational tool that segments bacterial and mammalian cells cultured in microfluidic devices and imaged by time-lapse microscopy, which can be used also in the context of external feedback control. The method is based on thresholding and uses the same core functions for both cell types. It allows us to segment individual cells in high cell density microfluidic devices, to quantify fluorescent protein expression over a time-lapse experiment, and to track individual mammalian cells. ChipSeg enables robust segmentation in external feedback control experiments and can be easily customized for other experimental settings and research aims.

4.
ACS Synth Biol ; 9(10): 2617-2624, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32966743

RESUMO

We study both in silico and in vivo the real-time feedback control of a molecular titration motif that has been earmarked as a fundamental component of antithetic and multicellular feedback control schemes in E. coli. We show that an external feedback control strategy can successfully regulate the average fluorescence output of a bacterial cell population to a desired constant level in real-time. We also provide in silico evidence that the same strategy can be used to track a time-varying reference signal where the set-point is switched to a different value halfway through the experiment. We use the experimental data to refine and parametrize an in silico model of the motif that can be used as an error computation module in future embedded or multicellular control experiments.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Retroalimentação Fisiológica , Microfluídica/métodos , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Comunicação Celular/fisiologia , Simulação por Computador , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Proteínas de Fluorescência Verde/metabolismo , Isopropiltiogalactosídeo/metabolismo , Cinética , Microscopia de Fluorescência , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA