Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668314

RESUMO

Under high-fat feeding, the hypothalamus atypically undergoes pro-inflammatory signaling activation. Recent data from transcriptomic analysis of microglia from rodents and humans has allowed the identification of several microglial subpopulations throughout the brain. Numerous studies have clarified the roles of these cells in hypothalamic inflammation, but how each microglial subset plays its functions upon inflammatory stimuli remains unexplored. Fortunately, these data unveiling microglial heterogeneity have triggered the development of novel experimental models for studying the roles and characteristics of each microglial subtype. In this review, we explore microglial heterogeneity in the hypothalamus and their crosstalk with astrocytes under high fat diet-induced inflammation. We present novel currently available ex vivo and in vivo experimental models that can be useful when designing a new research project in this field of study. Last, we examine the transcriptomic data already published to identify how the hypothalamic microglial signature changes upon short-term and prolonged high-fat feeding.


Assuntos
Astrócitos/patologia , Dieta Hiperlipídica/efeitos adversos , Hipotálamo/patologia , Inflamação/patologia , Microglia/patologia , Transcriptoma , Animais , Astrócitos/metabolismo , Humanos , Hipotálamo/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Microglia/metabolismo
2.
Am J Physiol Endocrinol Metab ; 319(4): E769-E778, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32865007

RESUMO

Obesity in menopausal women occurs because of the systemic effects of loss of ovarian function, resulting in increased body weight and oxidative stress. Caloric restriction (CR) is essential for weight loss, since it provides benefits associated with metabolic normalization resulting from the action of sirtuins. The aim of this work was to evaluate the physiological effects of weight cycling in ovariectomized females. Females aged 2 mo (n = 8/group) were submitted to simulated surgery, ovariectomy (OVX group), and ovariectomy with weight fluctuation (WF group). In the WF group, weight cycling was performed two times, using 21 days of ad libitum commercial feed and 21 days of caloric restriction with 40% of the feed consumed by the OVX group. After 17 wk, the animals were evaluated experimentally. Weight fluctuations reduced triacylglycerol and the adipose tissue index of the WF animals, while increasing the expression of antioxidant proteins. In addition to causing fluctuations in the physiological parameters, the weight cycling led to increases of adipocyte number and serum fatty acids. These effects were reflected in increased expression of the sirtuin (SIRT) 1 and SIRT4 proteins, as well as protein complexes of the mitochondrial electron transport chain, especially in the liver and adipose tissues. The weight-cycling results suggested that mitochondrial and nuclear sirtuins were active in cellular signaling for the control of lipid metabolism, oxidative phosphorylation, and redox status. Weight cycling was able to restore the health characteristics of lean animals.


Assuntos
Ovariectomia , Sirtuína 1/fisiologia , Aumento de Peso/fisiologia , Redução de Peso/fisiologia , Adipócitos , Tecido Adiposo/metabolismo , Animais , Antioxidantes/metabolismo , Restrição Calórica , Ingestão de Alimentos , Ácidos Graxos não Esterificados/sangue , Feminino , Metabolismo dos Lipídeos/genética , Ratos , Ratos Wistar , Sirtuína 1/genética , Triglicerídeos/metabolismo
3.
Mol Metab ; 79: 101840, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38036170

RESUMO

OBJECTIVE: Free fatty acid receptor-1 (FFAR1) is a medium- and long-chain fatty acid sensing G protein-coupled receptor that is highly expressed in the hypothalamus. Here, we investigated the central role of FFAR1 on energy balance. METHODS: Central FFAR1 agonism and virogenic knockdown were performed in mice. Energy balance studies, infrared thermographic analysis of brown adipose tissue (BAT) and molecular analysis of the hypothalamus, BAT, white adipose tissue (WAT) and liver were carried out. RESULTS: Pharmacological stimulation of FFAR1, using central administration of its agonist TUG-905 in diet-induced obese mice, decreases body weight and is associated with increased energy expenditure, BAT thermogenesis and browning of subcutaneous WAT (sWAT), as well as reduced AMP-activated protein kinase (AMPK) levels, reduced inflammation, and decreased endoplasmic reticulum (ER) stress in the hypothalamus. As FFAR1 is expressed in distinct hypothalamic neuronal subpopulations, we used an AAV vector expressing a shRNA to specifically knockdown Ffar1 in proopiomelanocortin (POMC) neurons of the arcuate nucleus of the hypothalamus (ARC) of obese mice. Our data showed that knockdown of Ffar1 in POMC neurons promoted hyperphagia and body weight gain. In parallel, these mice developed hepatic insulin resistance and steatosis. CONCLUSIONS: FFAR1 emerges as a new hypothalamic nutrient sensor regulating whole body energy balance. Moreover, pharmacological activation of FFAR1 could provide a therapeutic advance in the management of obesity and its associated metabolic disorders.


Assuntos
Ácidos Graxos não Esterificados , Pró-Opiomelanocortina , Camundongos , Animais , Ácidos Graxos não Esterificados/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Camundongos Obesos , Peso Corporal , Hipotálamo/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Metabolismo Energético/fisiologia
4.
Cells ; 11(13)2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35805082

RESUMO

BACKGROUND: The hypothalamic proopiomelanocortin (Pomc) neurons act as first-order sensors of systemic energy stores, providing signals that regulate caloric intake and energy expenditure. In experimental obesity, dietary saturated fatty acids affect Pomc endopeptidases (PCs), resulting in the abnormal production of the neurotransmitters α-melanocyte-stimulating hormone (α-MSH) and ß-endorphin, thus impacting energy balance. The cAMP response element-binding protein (CREB) is one of the transcription factors that control the expression of Pomc endopeptidases; however, it was previously unknown if dietary fats could affect CREB and consequently the expression of Pomc endopeptidases. METHODS: Here, we used single-cell RNA sequencing analysis, PCR, immunoblot, ELISA and immunofluorescence histological assays to determine the impact of a high-fat diet (HFD) on the expression and function of hypothalamic CREB and its impact on the melanocortinergic system. RESULTS: The results indicate that CREB is expressed in arcuate nucleus Pomc neurons and is activated as early as nine hours after the introduction of a high-fat diet. The inhibition of hypothalamic CREB using a short-hairpin RNA lentiviral vector resulted in increased diet-induced body-mass gain and reduced energy expenditure. This was accompanied by reduced expression of the Pomc endopeptidases, protein convertase 2, which are encoded by Pcsk2, and by the loss of the high-fat-diet-induced effect to inhibit the production of α-MSH. CONCLUSIONS: This study provides the first evidence for the involvement of CREB in the abnormal regulation of the hypothalamic Pomc endopeptidase system in experimental obesity.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Pró-Opiomelanocortina , Dieta Hiperlipídica , Endopeptidases , Humanos , Obesidade/metabolismo , Pró-Opiomelanocortina/genética , Pró-Proteína Convertase 2 , alfa-MSH/farmacologia
5.
Sci Rep ; 11(1): 15453, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326383

RESUMO

Glutamic acid is the main excitatory neurotransmitter acting both in the brain and in peripheral tissues. Abnormal distribution of glutamic acid receptors occurs in skin hyperproliferative conditions such as psoriasis and skin regeneration; however, the biological function of glutamic acid in the skin remains unclear. Using ex vivo, in vivo and in silico approaches, we showed that exogenous glutamic acid promotes hair growth and keratinocyte proliferation. Topical application of glutamic acid decreased the expression of genes related to apoptosis in the skin, whereas glutamic acid increased cell viability and proliferation in human keratinocyte cultures. In addition, we identified the keratinocyte glutamic acid excitotoxic concentration, providing evidence for the existence of a novel skin signalling pathway mediated by a neurotransmitter that controls keratinocyte and hair follicle proliferation. Thus, glutamic acid emerges as a component of the peripheral nervous system that acts to control cell growth in the skin. These results raise the perspective of the pharmacological and nutritional use of glutamic acid to treat skin diseases.


Assuntos
Ácido Glutâmico/farmacologia , Folículo Piloso/efeitos dos fármacos , Cabelo/efeitos dos fármacos , Fenômenos Fisiológicos da Pele , Pele/efeitos dos fármacos , Animais , Apoptose , Linhagem Celular , Proliferação de Células , Simulação por Computador , Desenvolvimento de Medicamentos , Fibroblastos/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Queratinócitos/citologia , Masculino , Camundongos , Mapeamento de Interação de Proteínas , Regeneração , Transdução de Sinais , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA