Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298190

RESUMO

Ananas comosus var. bracteatus (Ac. bracteatus) is a typical leaf-chimeric ornamental plant. The chimeric leaves are composed of central green photosynthetic tissue (GT) and marginal albino tissue (AT). The mosaic existence of GT and AT makes the chimeric leaves an ideal material for the study of the synergistic mechanism of photosynthesis and antioxidant metabolism. The daily changes in net photosynthetic rate (NPR) and stomatal conductance (SCT) of the leaves indicated the typical crassulacean acid metabolism (CAM) characteristic of Ac. bracteatus. Both the GT and AT of chimeric leaves fixed CO2 during the night and released CO2 from malic acid for photosynthesis during the daytime. The malic acid content and NADPH-ME activity of the AT during the night was significantly higher than that of GT, which suggests that the AT may work as a CO2 pool to store CO2 during the night and supply CO2 for photosynthesis in the GT during the daytime. Furthermore, the soluble sugar content (SSC) in the AT was significantly lower than that of GT, while the starch content (SC) of the AT was apparently higher than that of GT, indicating that AT was inefficient in photosynthesis but may function as a photosynthate sink to help the GT maintain high photosynthesis activity. Additionally, the AT maintained peroxide balance by enhancing the non-enzymatic antioxidant system and antioxidant enzyme system to avoid antioxidant damage. The enzyme activities of reductive ascorbic acid (AsA) and the glutathione (GSH) cycle (except DHAR) and superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were enhanced, apparently to make the AT grow normally. This study indicates that, although the AT of the chimeric leaves was inefficient at photosynthesis because of the lack of chlorophyll, it can cooperate with the GT by working as a CO2 supplier and photosynthate store to enhance the photosynthetic ability of GT to help chimeric plants grow well. Additionally, the AT can avoid peroxide damage caused by the lack of chlorophyll by enhancing the activity of the antioxidant system. The AT plays an active role in the normal growth of the chimeric leaves.


Assuntos
Ananas , Antioxidantes , Antioxidantes/metabolismo , Ananas/metabolismo , Dióxido de Carbono/metabolismo , Fotossíntese , Clorofila/metabolismo , Glutationa/metabolismo , Peróxidos/metabolismo , Folhas de Planta/metabolismo
2.
G3 (Bethesda) ; 12(2)2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35100332

RESUMO

Ananas comosus var. bracteatus f. tricolor (GL1) is a red pineapple accession whose mostly green leaves with chimeric white leaf margins turn red in spring and autumn and during flowering. It is an important ornamental plant and ideal plant research model for anthocyanin metabolism, chimeric leaf development, and photosynthesis. Here, we generated a highly contiguous chromosome-scale genome assembly for GL1 and compared it with other 3 published pineapple assemblies (var. comosus accessions MD2 and F153, and var. bracteatus accession CB5). The GL1 assembly has a total size of ∼461 Mb, with a contig N50 of ∼2.97 Mb and Benchmarking Universal Single-Copy Ortholog score of 97.3%. More than 99% of the contigs are anchored to 25 pseudochromosomes. Compared with the other 3 published pineapple assemblies, the GL1 assembly was confirmed to be more continuous. Our evolutionary analysis showed that the Bromeliaceae and Poaceae diverged from their nearest common ancestor ∼82.36 million years ago (MYA). Population structure analysis showed that while GL1 has not undergone admixture, bracteatus accession CB5 has resulted from admixture of 3 species of Ananas. Through classification of orthogroups, analysis of genes under positive selection, and analysis of presence/absence variants, we identified a series of genes related to anthocyanin metabolism and development of chimeric leaves. The structure and evolution of these genes were compared among the published pineapple assemblies with reveal candidate genes for these traits. The GL1 genome assembly and its comparisons with other 3 pineapple genome assemblies provide a valuable resource for the genetic improvement of pineapple and serve as a model for understanding the genomic basis of important traits in different pineapple varieties and other pan-cereal crops.


Assuntos
Ananas , Genoma de Planta , Pigmentação , Folhas de Planta , Ananas/genética , Quimera/genética , Genômica/métodos , Fotossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA