Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biol Psychiatry ; 95(8): 810-817, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37967698

RESUMO

BACKGROUND: To gain insights into the role of brain structure and function on anxiety (ANX), we conducted a genetically informed investigation leveraging information from ANX genome-wide association studies available from the UK Biobank (n = 380,379), the FinnGen Program (n = 290,361), and the Million Veteran Program (n = 175,163) together with UK Biobank genome-wide data (n = 33,224) related to 3935 brain imaging-derived phenotypes (IDPs). METHODS: A genetic correlation analysis between ANX and brain IDPs was performed using linkage disequilibrium score regression. To investigate ANX-brain associations, a 2-sample Mendelian randomization was performed considering multiple methods and sensitivity analyses. A subsequent multivariable Mendelian randomization was conducted to distinguish between direct and indirect effects. Finally, a generalized linear model was used to explore the associations of brain IDPs with ANX symptoms. RESULTS: After false discovery rate correction (q < .05), we identified 41 brain IDPs genetically correlated with ANX without heterogeneity among the datasets investigated (i.e., UK Biobank, FinnGen, and Million Veteran Program). Six of these IDPs showed genetically inferred causal effects on ANX. In the subsequent multivariable Mendelian randomization analysis, reduced area of the right posterior middle cingulate gyrus (ß = -0.09, p = 8.01 × 10-4) and reduced gray matter volume of the right anterior superior temporal gyrus (ß = -0.09, p = 1.55 × 10-3) had direct effects on ANX. In the ANX symptom-level analysis, the right posterior middle cingulate gyrus was negatively associated with "tense, sore, or aching muscles during the worst period of anxiety" (ß = -0.13, p = 8.26 × 10-6). CONCLUSIONS: This study identified genetically inferred effects that are generalizable across large cohorts, thereby contributing to our understanding of how changes in brain structure and function can lead to ANX.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Humanos , Transtornos de Ansiedade/genética , Ansiedade/genética , Encéfalo/diagnóstico por imagem , Polimorfismo de Nucleotídeo Único
2.
medRxiv ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38405718

RESUMO

We leveraged information from more than 1.2 million participants to investigate the genetics of anxiety disorders across five continental ancestral groups. Ancestry-specific and cross-ancestry genome-wide association studies identified 51 anxiety-associated loci, 39 of which are novel. Additionally, polygenic risk scores derived from individuals of European descent were associated with anxiety in African, Admixed-American, and East Asian groups. The heritability of anxiety was enriched for genes expressed in the limbic system, the cerebral cortex, the cerebellum, the metencephalon, the entorhinal cortex, and the brain stem. Transcriptome- and proteome-wide analyses highlighted 115 genes associated with anxiety through brain-specific and cross-tissue regulation. We also observed global and local genetic correlations with depression, schizophrenia, and bipolar disorder and putative causal relationships with several physical health conditions. Overall, this study expands the knowledge regarding the genetic risk and pathogenesis of anxiety disorders, highlighting the importance of investigating diverse populations and integrating multi-omics information.

3.
Nat Genet ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294497

RESUMO

We leveraged information from more than 1.2 million participants, including 97,383 cases, to investigate the genetics of anxiety disorders across five continental groups. Through ancestry-specific and cross-ancestry genome-wide association studies, we identified 51 anxiety-associated loci, 39 of which were novel. In addition, polygenic risk scores derived from individuals of European descent were associated with anxiety in African, admixed American and East Asian groups. The heritability of anxiety was enriched for genes expressed in the limbic system, cerebral cortex, cerebellum, metencephalon, entorhinal cortex and brain stem. Transcriptome-wide and proteome-wide analyses highlighted 115 genes associated with anxiety through brain-specific and cross-tissue regulation. Anxiety also showed global and local genetic correlations with depression, schizophrenia and bipolar disorder and widespread pleiotropy with several physical health domains. Overall, this study expands our knowledge regarding the genetic risk and pathogenesis of anxiety disorders, highlighting the importance of investigating diverse populations and integrating multi-omics information.

4.
medRxiv ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37745546

RESUMO

Background: To gain insights into the role of brain structure and function on anxiety (ANX), we conducted a genetically informed investigation leveraging information from ANX genome-wide association studies available from UK Biobank (UKB; N=380,379), FinnGen Program (N=290,361), and Million Veteran Program (MVP; N=199,611) together with UKB genome-wide data (N=33,224) related to 3,935 brain imaging-derived phenotypes (IDP). Methods: A genetic correlation analysis between ANX and brain IDPs was performed using linkage disequilibrium score regression. To investigate ANX-brain associations, a two-sample Mendelian randomization (MR) was performed considering multiple methods and sensitivity analyses. A subsequent multivariable MR (MVMR) was executed to distinguish between direct and indirect effects. Finally, a generalized linear model was used to explore the associations of brain IDPs with ANX symptoms. Results: After false discovery rate correction (FDR q<0.05), we identified 41 brain IDPs genetically correlated with ANX without heterogeneity among the datasets investigated (i.e., UKB, FinnGen, and MVP). Six of these IDPs showed genetically inferred causal effects on ANX. In the subsequent MVMR analysis, reduced area of the right posterior middle-cingulate gyrus (rpMCG; beta=-0.09, P= 8.01×10 -4 ) and reduced gray-matter volume of the right anterior superior temporal gyrus (raSTG; beta=-0.09, P=1.55×10 -3 ) had direct effects on ANX. In the ANX symptom-level analysis, rpMCG was negatively associated with "tense sore oraching muscles during the worst period of anxiety" (beta=-0.13, P=8.26×10 -6 ). Conclusions: This study identified genetically inferred effects generalizable across large cohorts, contributing to understand how changes in brain structure and function can lead to ANX.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA