Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nucleic Acids Res ; 51(D1): D488-D508, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36420884

RESUMO

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), founding member of the Worldwide Protein Data Bank (wwPDB), is the US data center for the open-access PDB archive. As wwPDB-designated Archive Keeper, RCSB PDB is also responsible for PDB data security. Annually, RCSB PDB serves >10 000 depositors of three-dimensional (3D) biostructures working on all permanently inhabited continents. RCSB PDB delivers data from its research-focused RCSB.org web portal to many millions of PDB data consumers based in virtually every United Nations-recognized country, territory, etc. This Database Issue contribution describes upgrades to the research-focused RCSB.org web portal that created a one-stop-shop for open access to ∼200 000 experimentally-determined PDB structures of biological macromolecules alongside >1 000 000 incorporated Computed Structure Models (CSMs) predicted using artificial intelligence/machine learning methods. RCSB.org is a 'living data resource.' Every PDB structure and CSM is integrated weekly with related functional annotations from external biodata resources, providing up-to-date information for the entire corpus of 3D biostructure data freely available from RCSB.org with no usage limitations. Within RCSB.org, PDB structures and the CSMs are clearly identified as to their provenance and reliability. Both are fully searchable, and can be analyzed and visualized using the full complement of RCSB.org web portal capabilities.


Assuntos
Inteligência Artificial , Bases de Dados de Proteínas , Proteínas , Aprendizado de Máquina , Conformação Proteica , Proteínas/química , Reprodutibilidade dos Testes
2.
PLoS Biol ; 18(8): e3000815, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32760062

RESUMO

Two illustrations integrate current knowledge about severe acute respiratory syndrome (SARS) coronaviruses and their life cycle. They have been widely used in education and outreach through free distribution as part of a coronavirus-related resource at Protein Data Bank (PDB)-101, the education portal of the RCSB PDB. Scientific sources for creation of the illustrations and examples of dissemination and response are presented.


Assuntos
Betacoronavirus/crescimento & desenvolvimento , Pesquisa Biomédica/educação , Infecções por Coronavirus/prevenção & controle , Bases de Dados de Proteínas , Medicina nas Artes , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Animais , Betacoronavirus/fisiologia , Pesquisa Biomédica/métodos , COVID-19 , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Apresentação de Dados , Humanos , Disseminação de Informação/métodos , Estágios do Ciclo de Vida , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , Mucosa Respiratória/virologia , SARS-CoV-2
3.
Nucleic Acids Res ; 49(D1): D437-D451, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33211854

RESUMO

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), the US data center for the global PDB archive and a founding member of the Worldwide Protein Data Bank partnership, serves tens of thousands of data depositors in the Americas and Oceania and makes 3D macromolecular structure data available at no charge and without restrictions to millions of RCSB.org users around the world, including >660 000 educators, students and members of the curious public using PDB101.RCSB.org. PDB data depositors include structural biologists using macromolecular crystallography, nuclear magnetic resonance spectroscopy, 3D electron microscopy and micro-electron diffraction. PDB data consumers accessing our web portals include researchers, educators and students studying fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. During the past 2 years, the research-focused RCSB PDB web portal (RCSB.org) has undergone a complete redesign, enabling improved searching with full Boolean operator logic and more facile access to PDB data integrated with >40 external biodata resources. New features and resources are described in detail using examples that showcase recently released structures of SARS-CoV-2 proteins and host cell proteins relevant to understanding and addressing the COVID-19 global pandemic.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Proteínas , Substâncias Macromoleculares/química , Conformação Proteica , Proteínas/química , Bioengenharia/métodos , Pesquisa Biomédica/métodos , Biotecnologia/métodos , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/virologia , Humanos , Substâncias Macromoleculares/metabolismo , Pandemias , Proteínas/genética , Proteínas/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Software , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
4.
Proteins ; 90(5): 1054-1080, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34580920

RESUMO

Understanding the molecular evolution of the SARS-CoV-2 virus as it continues to spread in communities around the globe is important for mitigation and future pandemic preparedness. Three-dimensional structures of SARS-CoV-2 proteins and those of other coronavirusess archived in the Protein Data Bank were used to analyze viral proteome evolution during the first 6 months of the COVID-19 pandemic. Analyses of spatial locations, chemical properties, and structural and energetic impacts of the observed amino acid changes in >48 000 viral isolates revealed how each one of 29 viral proteins have undergone amino acid changes. Catalytic residues in active sites and binding residues in protein-protein interfaces showed modest, but significant, numbers of substitutions, highlighting the mutational robustness of the viral proteome. Energetics calculations showed that the impact of substitutions on the thermodynamic stability of the proteome follows a universal bi-Gaussian distribution. Detailed results are presented for potential drug discovery targets and the four structural proteins that comprise the virion, highlighting substitutions with the potential to impact protein structure, enzyme activity, and protein-protein and protein-nucleic acid interfaces. Characterizing the evolution of the virus in three dimensions provides testable insights into viral protein function and should aid in structure-based drug discovery efforts as well as the prospective identification of amino acid substitutions with potential for drug resistance.


Assuntos
COVID-19 , Pandemias , Aminoácidos , Humanos , Estudos Prospectivos , Proteoma , SARS-CoV-2 , Proteínas Virais/genética , Proteínas Virais/metabolismo
5.
Nucleic Acids Res ; 47(D1): D464-D474, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30357411

RESUMO

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB, rcsb.org), the US data center for the global PDB archive, serves thousands of Data Depositors in the Americas and Oceania and makes 3D macromolecular structure data available at no charge and without usage restrictions to more than 1 million rcsb.org Users worldwide and 600 000 pdb101.rcsb.org education-focused Users around the globe. PDB Data Depositors include structural biologists using macromolecular crystallography, nuclear magnetic resonance spectroscopy and 3D electron microscopy. PDB Data Consumers include researchers, educators and students studying Fundamental Biology, Biomedicine, Biotechnology and Energy. Recent reorganization of RCSB PDB activities into four integrated, interdependent services is described in detail, together with tools and resources added over the past 2 years to RCSB PDB web portals in support of a 'Structural View of Biology.'


Assuntos
Bases de Dados de Proteínas , Conformação Proteica , Pesquisa Biomédica/educação , Biotecnologia/educação , Curadoria de Dados , Software
6.
Nucleic Acids Res ; 45(D1): D271-D281, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27794042

RESUMO

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB, http://rcsb.org), the US data center for the global PDB archive, makes PDB data freely available to all users, from structural biologists to computational biologists and beyond. New tools and resources have been added to the RCSB PDB web portal in support of a 'Structural View of Biology.' Recent developments have improved the User experience, including the high-speed NGL Viewer that provides 3D molecular visualization in any web browser, improved support for data file download and enhanced organization of website pages for query, reporting and individual structure exploration. Structure validation information is now visible for all archival entries. PDB data have been integrated with external biological resources, including chromosomal position within the human genome; protein modifications; and metabolic pathways. PDB-101 educational materials have been reorganized into a searchable website and expanded to include new features such as the Geis Digital Archive.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Proteínas/química , Proteínas/genética , Conjuntos de Dados como Assunto , Redes e Vias Metabólicas , Modelos Moleculares , Conformação Proteica , Proteínas/metabolismo , Software , Relação Estrutura-Atividade , Interface Usuário-Computador , Navegador
7.
PLoS Biol ; 13(5): e1002140, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25942442

RESUMO

The Research Collaboratory for Structural Bioinformatics (RCSB) Molecule of the Month series provides a curated introduction to the 3-D biomolecular structures available in the Protein Data Bank archive and the tools that are available at the RCSB website for accessing and exploring them. A variety of educational materials, such as articles, videos, posters, hands-on activities, lesson plans, and curricula, build on this series for use in a variety of educational settings as a general introduction to key topics, such as enzyme action, protein synthesis, and viruses. The series and associated educational materials are freely available at www.rcsb.org.


Assuntos
Bases de Dados como Assunto , Biologia Molecular/educação , Estrutura Molecular
8.
Nucleic Acids Res ; 43(Database issue): D345-56, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25428375

RESUMO

The RCSB Protein Data Bank (RCSB PDB, http://www.rcsb.org) provides access to 3D structures of biological macromolecules and is one of the leading resources in biology and biomedicine worldwide. Our efforts over the past 2 years focused on enabling a deeper understanding of structural biology and providing new structural views of biology that support both basic and applied research and education. Herein, we describe recently introduced data annotations including integration with external biological resources, such as gene and drug databases, new visualization tools and improved support for the mobile web. We also describe access to data files, web services and open access software components to enable software developers to more effectively mine the PDB archive and related annotations. Our efforts are aimed at expanding the role of 3D structure in understanding biology and medicine.


Assuntos
Bases de Dados de Proteínas , Conformação Proteica , Sítios de Ligação , Internet , Proteínas de Membrana/química , Biologia Molecular/educação , Anotação de Sequência Molecular , Complexos Multiproteicos/química , Peptídeos/química , Preparações Farmacêuticas/química , Pesquisa , Software
9.
Bioinformatics ; 31(1): 126-7, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25183487

RESUMO

SUMMARY: The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) resource provides tools for query, analysis and visualization of the 3D structures in the PDB archive. As the mobile Web is starting to surpass desktop and laptop usage, scientists and educators are beginning to integrate mobile devices into their research and teaching. In response, we have developed the RCSB PDB Mobile app for the iOS and Android mobile platforms to enable fast and convenient access to RCSB PDB data and services. Using the app, users from the general public to expert researchers can quickly search and visualize biomolecules, and add personal annotations via the RCSB PDB's integrated MyPDB service. AVAILABILITY AND IMPLEMENTATION: RCSB PDB Mobile is freely available from the Apple App Store and Google Play (http://www.rcsb.org).


Assuntos
Biologia Computacional/métodos , Gráficos por Computador , Bases de Dados de Proteínas , Aplicativos Móveis , Software , Pesquisa Biomédica , Humanos , Interface Usuário-Computador , Fluxo de Trabalho
10.
Nucleic Acids Res ; 41(Database issue): D475-82, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23193259

RESUMO

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) develops tools and resources that provide a structural view of biology for research and education. The RCSB PDB web site (http://www.rcsb.org) uses the curated 3D macromolecular data contained in the PDB archive to offer unique methods to access, report and visualize data. Recent activities have focused on improving methods for simple and complex searches of PDB data, creating specialized access to chemical component data and providing domain-based structural alignments. New educational resources are offered at the PDB-101 educational view of the main web site such as Author Profiles that display a researcher's PDB entries in a timeline. To promote different kinds of access to the RCSB PDB, Web Services have been expanded, and an RCSB PDB Mobile application for the iPhone/iPad has been released. These improvements enable new opportunities for analyzing and understanding structure data.


Assuntos
Bases de Dados de Proteínas , Conformação Proteica , Bioquímica/educação , Gráficos por Computador , Internet , Ligantes , Estrutura Terciária de Proteína , Pesquisa , Homologia Estrutural de Proteína
11.
IUCrJ ; 11(Pt 3): 279-286, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38597878

RESUMO

The Protein Data Bank (PDB) was established as the first open-access digital data resource in biology and medicine in 1971 with seven X-ray crystal structures of proteins. Today, the PDB houses >210 000 experimentally determined, atomic level, 3D structures of proteins and nucleic acids as well as their complexes with one another and small molecules (e.g. approved drugs, enzyme cofactors). These data provide insights into fundamental biology, biomedicine, bioenergy and biotechnology. They proved particularly important for understanding the SARS-CoV-2 global pandemic. The US-funded Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) and other members of the Worldwide Protein Data Bank (wwPDB) partnership jointly manage the PDB archive and support >60 000 `data depositors' (structural biologists) around the world. wwPDB ensures the quality and integrity of the data in the ever-expanding PDB archive and supports global open access without limitations on data usage. The RCSB PDB research-focused web portal at https://www.rcsb.org/ (RCSB.org) supports millions of users worldwide, representing a broad range of expertise and interests. In addition to retrieving 3D structure data, PDB `data consumers' access comparative data and external annotations, such as information about disease-causing point mutations and genetic variations. RCSB.org also provides access to >1 000 000 computed structure models (CSMs) generated using artificial intelligence/machine-learning methods. To avoid doubt, the provenance and reliability of experimentally determined PDB structures and CSMs are identified. Related training materials are available to support users in their RCSB.org explorations.


Assuntos
COVID-19 , Bases de Dados de Proteínas , Conformação Proteica , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , Biologia Computacional/métodos , Proteínas/química
12.
Patterns (N Y) ; 5(2): 100931, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38370120

RESUMO

Molecular origami offers an offline way to explore the 3D structures of biology. Visit PDB101.rcsb.org to download free paper models of DNA, green fluorescent protein, viruses, and more.

13.
Nucleic Acids Res ; 39(Database issue): D392-401, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21036868

RESUMO

The RCSB Protein Data Bank (RCSB PDB) web site (http://www.pdb.org) has been redesigned to increase usability and to cater to a larger and more diverse user base. This article describes key enhancements and new features that fall into the following categories: (i) query and analysis tools for chemical structure searching, query refinement, tabulation and export of query results; (ii) web site customization and new structure alerts; (iii) pair-wise and representative protein structure alignments; (iv) visualization of large assemblies; (v) integration of structural data with the open access literature and binding affinity data; and (vi) web services and web widgets to facilitate integration of PDB data and tools with other resources. These improvements enable a range of new possibilities to analyze and understand structure data. The next generation of the RCSB PDB web site, as described here, provides a rich resource for research and education.


Assuntos
Bases de Dados de Proteínas , Proteínas/química , Animais , Gráficos por Computador , Humanos , Internet , Ligantes , Camundongos , Conformação Proteica , Integração de Sistemas , Interface Usuário-Computador
14.
Biochem Mol Biol Educ ; 51(2): 137-145, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36495283

RESUMO

Communication and collaboration are key science competencies that support sharing of scientific knowledge with experts and non-experts alike. On the one hand, they facilitate interdisciplinary conversations between students, educators, and researchers, while on the other they improve public awareness, enable informed choices, and impact policy decisions. Herein, we describe an interdisciplinary undergraduate course focused on using data from various bioinformatics data resources to explore the molecular underpinnings of diabetes mellitus (Types 1 and 2) and introducing students to science communication. Building on course materials and original student-generated artifacts, a series of collaborative activities engaged students, educators, researchers, healthcare professionals and community members in exploring, learning about, and discussing the molecular bases of diabetes. These collaborations generated novel educational materials and approaches to learning and presenting complex ideas about major global health challenges in formats accessible to diverse audiences.


Assuntos
Saúde Global , Estudantes , Humanos , Estudos Interdisciplinares , Aprendizagem , Comunicação , Comunicação Interdisciplinar
15.
bioRxiv ; 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36778399

RESUMO

Although the rapid development of therapeutic responses to combat SARS-CoV-2 represents a great human achievement, it also demonstrates untapped potential for advanced pandemic preparedness. Cross-species efficacy against multiple human coronaviruses by the main protease (MPro) inhibitor nirmatrelvir raises the question of its breadth of inhibition and our preparedness against future coronaviral threats. Herein, we describe sequence and structural analyses of 346 unique MPro enzymes from all coronaviruses represented in the NCBI Virus database. Cognate substrates of these representative proteases were inferred from their polyprotein sequences. We clustered MPro sequences based on sequence identity and AlphaFold2-predicted structures, showing approximate correspondence with known viral subspecies. Predicted structures of five representative MPros bound to their inferred cognate substrates showed high conservation in protease:substrate interaction modes, with some notable differences. Yeast-based proteolysis assays of the five representatives were able to confirm activity of three on inferred cognate substrates, and demonstrated that of the three, only one was effectively inhibited by nirmatrelvir. Our findings suggest that comprehensive preparedness against future potential coronaviral threats will require continued inhibitor development. Our methods may be applied to candidate coronaviral MPro inhibitors to evaluate in advance the breadth of their inhibition and identify target coronaviruses potentially meriting advanced development of alternative countermeasures.

16.
Protein Sci ; 31(1): 129-140, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34601771

RESUMO

The Protein Data Bank (PDB) archive is a rich source of information in the form of atomic-level three-dimensional (3D) structures of biomolecules experimentally determined using macromolecular crystallography, nuclear magnetic resonance (NMR) spectroscopy, and electron microscopy (3DEM). Originally established in 1971 as a resource for protein crystallographers to freely exchange data, today PDB data drive research and education across scientific disciplines. In 2011, the online portal PDB-101 was launched to support teachers, students, and the general public in PDB archive exploration (pdb101.rcsb.org). Maintained by the Research Collaboratory for Structural Bioinformatics PDB, PDB-101 aims to help train the next generation of PDB users and to promote the overall importance of structural biology and protein science to nonexperts. Regularly published features include the highly popular Molecule of the Month series, 3D model activities, molecular animation videos, and educational curricula. Materials are organized into various categories (Health and Disease, Molecules of Life, Biotech and Nanotech, and Structures and Structure Determination) and searchable by keyword. A biennial health focus frames new resource creation and provides topics for annual video challenges for high school students. Web analytics document that PDB-101 materials relating to fundamental topics (e.g., hemoglobin, catalase) are highly accessed year-on-year. In addition, PDB-101 materials created in response to topical health matters (e.g., Zika, measles, coronavirus) are well received. PDB-101 shows how learning about the diverse shapes and functions of PDB structures promotes understanding of all aspects of biology, from the central dogma of biology to health and disease to biological energy.


Assuntos
Bases de Dados de Proteínas , Proteínas/química , Animais , Cristalografia por Raios X , Humanos , Microscopia Eletrônica , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Proteômica
17.
Biomolecules ; 12(10)2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36291635

RESUMO

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), funded by the United States National Science Foundation, National Institutes of Health, and Department of Energy, supports structural biologists and Protein Data Bank (PDB) data users around the world. The RCSB PDB, a founding member of the Worldwide Protein Data Bank (wwPDB) partnership, serves as the US data center for the global PDB archive housing experimentally-determined three-dimensional (3D) structure data for biological macromolecules. As the wwPDB-designated Archive Keeper, RCSB PDB is also responsible for the security of PDB data and weekly update of the archive. RCSB PDB serves tens of thousands of data depositors (using macromolecular crystallography, nuclear magnetic resonance spectroscopy, electron microscopy, and micro-electron diffraction) annually working on all permanently inhabited continents. RCSB PDB makes PDB data available from its research-focused web portal at no charge and without usage restrictions to many millions of PDB data consumers around the globe. It also provides educators, students, and the general public with an introduction to the PDB and related training materials through its outreach and education-focused web portal. This review article describes growth of the PDB, examines evolution of experimental methods for structure determination viewed through the lens of the PDB archive, and provides a detailed accounting of PDB archival holdings and their utilization by researchers, educators, and students worldwide.


Assuntos
Biologia Computacional , Proteínas , Humanos , Conformação Proteica , Bases de Dados de Proteínas , Biologia Computacional/métodos , Proteínas/química , Estudantes
18.
Biophys Rev ; 14(6): 1281-1301, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36474933

RESUMO

As a discipline, structural biology has been transformed by the three-dimensional electron microscopy (3DEM) "Resolution Revolution" made possible by convergence of robust cryo-preservation of vitrified biological materials, sample handling systems, and measurement stages operating a liquid nitrogen temperature, improvements in electron optics that preserve phase information at the atomic level, direct electron detectors (DEDs), high-speed computing with graphics processing units, and rapid advances in data acquisition and processing software. 3DEM structure information (atomic coordinates and related metadata) are archived in the open-access Protein Data Bank (PDB), which currently holds more than 11,000 3DEM structures of proteins and nucleic acids, and their complexes with one another and small-molecule ligands (~ 6% of the archive). Underlying experimental data (3DEM density maps and related metadata) are stored in the Electron Microscopy Data Bank (EMDB), which currently holds more than 21,000 3DEM density maps. After describing the history of the PDB and the Worldwide Protein Data Bank (wwPDB) partnership, which jointly manages both the PDB and EMDB archives, this review examines the origins of the resolution revolution and analyzes its impact on structural biology viewed through the lens of PDB holdings. Six areas of focus exemplifying the impact of 3DEM across the biosciences are discussed in detail (icosahedral viruses, ribosomes, integral membrane proteins, SARS-CoV-2 spike proteins, cryogenic electron tomography, and integrative structure determination combining 3DEM with complementary biophysical measurement techniques), followed by a review of 3DEM structure validation by the wwPDB that underscores the importance of community engagement.

19.
Protein Sci ; 31(1): 187-208, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34676613

RESUMO

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), funded by the US National Science Foundation, National Institutes of Health, and Department of Energy, has served structural biologists and Protein Data Bank (PDB) data consumers worldwide since 1999. RCSB PDB, a founding member of the Worldwide Protein Data Bank (wwPDB) partnership, is the US data center for the global PDB archive housing biomolecular structure data. RCSB PDB is also responsible for the security of PDB data, as the wwPDB-designated Archive Keeper. Annually, RCSB PDB serves tens of thousands of three-dimensional (3D) macromolecular structure data depositors (using macromolecular crystallography, nuclear magnetic resonance spectroscopy, electron microscopy, and micro-electron diffraction) from all inhabited continents. RCSB PDB makes PDB data available from its research-focused RCSB.org web portal at no charge and without usage restrictions to millions of PDB data consumers working in every nation and territory worldwide. In addition, RCSB PDB operates an outreach and education PDB101.RCSB.org web portal that was used by more than 800,000 educators, students, and members of the public during calendar year 2020. This invited Tools Issue contribution describes (i) how the archive is growing and evolving as new experimental methods generate ever larger and more complex biomolecular structures; (ii) the importance of data standards and data remediation in effective management of the archive and facile integration with more than 50 external data resources; and (iii) new tools and features for 3D structure analysis and visualization made available during the past year via the RCSB.org web portal.


Assuntos
Biologia Computacional/história , Bases de Dados de Proteínas/história , Interface Usuário-Computador , Aniversários e Eventos Especiais , História do Século XX , História do Século XXI
20.
Protein Sci ; 31(12): e4482, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36281733

RESUMO

Now in its 52nd year of continuous operations, the Protein Data Bank (PDB) is the premiere open-access global archive housing three-dimensional (3D) biomolecular structure data. It is jointly managed by the Worldwide Protein Data Bank (wwPDB) partnership. The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) is funded by the National Science Foundation, National Institutes of Health, and US Department of Energy and serves as the US data center for the wwPDB. RCSB PDB is also responsible for the security of PDB data in its role as wwPDB-designated Archive Keeper. Every year, RCSB PDB serves tens of thousands of depositors of 3D macromolecular structure data (coming from macromolecular crystallography, nuclear magnetic resonance spectroscopy, electron microscopy, and micro-electron diffraction). The RCSB PDB research-focused web portal (RCSB.org) makes PDB data available at no charge and without usage restrictions to many millions of PDB data consumers around the world. The RCSB PDB training, outreach, and education web portal (PDB101.RCSB.org) serves nearly 700 K educators, students, and members of the public worldwide. This invited Tools Issue contribution describes how RCSB PDB (i) is organized; (ii) works with wwPDB partners to process new depositions; (iii) serves as the wwPDB-designated Archive Keeper; (iv) enables exploration and 3D visualization of PDB data via RCSB.org; and (v) supports training, outreach, and education via PDB101.RCSB.org. New tools and features at RCSB.org are presented using examples drawn from high-resolution structural studies of proteins relevant to treatment of human cancers by targeting immune checkpoints.


Assuntos
Biologia Computacional , Proteínas , Humanos , Conformação Proteica , Bases de Dados de Proteínas , Proteínas/química , Biologia Computacional/métodos , Substâncias Macromoleculares/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA