Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 21(19): 8103-8110, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34519503

RESUMO

We report the formation of nanobubbles on graphene with a radius of the order of 1 nm, using ultralow energy implantation of noble gas ions (He, Ne, Ar) into graphene grown on a Pt(111) surface. We show that the universal scaling of the aspect ratio, which has previously been established for larger bubbles, breaks down when the bubble radius approaches 1 nm, resulting in much larger aspect ratios. Moreover, we observe that the bubble stability and aspect ratio depend on the substrate onto which the graphene is grown (bubbles are stable for Pt but not for Cu) and trapped element. We interpret these dependencies in terms of the atomic compressibility of the noble gas as well as of the adhesion energies between graphene, the substrate, and trapped atoms.

2.
ACS Nano ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38938181

RESUMO

Despite its broad potential applications, substitution of carbon by transition metal atoms in graphene has so far been explored only to a limited extent. We report the realization of substitutional Mn doping of graphene to a record high atomic concentration of 0.5%, which was achieved using ultralow-energy ion implantation. By correlating the experimental data with the results of ab initio Born-Oppenheimer molecular dynamics calculations, we infer that direct substitution is the dominant mechanism of impurity incorporation. Thermal annealing in ultrahigh vacuum provides efficient removal of surface contaminants and additional implantation-induced disorder, resulting in Mn-doped graphene that, aside from the substitutional Mn impurities, is essentially as clean and defect-free as the as-grown layer. We further show that the Dirac character of graphene is preserved upon substitutional Mn doping, even in this high concentration regime, making this system ideal for studying the interaction between Dirac conduction electrons and localized magnetic moments. More generally, these results show that ultralow energy ion implantation can be used for controlled functionalization of graphene with substitutional transition-metal atoms, of relevance for a wide range of applications, from magnetism and spintronics to single-atom catalysis.

3.
Nanomaterials (Basel) ; 13(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36839025

RESUMO

In this paper, the effectiveness of ultra-low-energy ion implantation as a means of defect engineering in graphene was explored through the measurement of Scanning Kelvin Probe Microscopy (SKPM) and Raman spectroscopy, with boron (B) and helium (He) ions being implanted into monolayer graphene samples. We used electrostatic masks to create a doped and non-doped region in one single implantation step. For verification we measured the surface potential profile along the sample and proved the feasibility of lateral controllable doping. In another experiment, a voltage gradient was applied across the graphene layer in order to implant helium at different energies and thus perform an ion-energy-dependent investigation of the implantation damage of the graphene. For this purpose Raman measurements were performed, which show the different damage due to the various ion energies. Finally, ion implantation simulations were conducted to evaluate damage formation.

4.
Nanoscale ; 15(24): 10306-10318, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37278063

RESUMO

The development of earth-abundant and high-performance bifunctional catalysts for both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) in alkaline electrolytes is required to efficiently produce hydrogen by electrochemical water splitting, but remains a challenge. We have fabricated mesoporous cobalt iron oxide inverse opals (m-CFO IO) with different mole ratios of cobalt and iron by a wet chemical method using polystyrene beads as a hard template, followed by calcination in air. The performance of the m-CFO IO as OER and HER electrocatalysts was investigated. The as-prepared catalyst with equal concentrations of Fe and Co exhibits remarkable OER and HER performances with low overpotentials of 261 and 157 mV to attain 10 mA cm-2 and small Tafel slopes of 63 and 56 mV dec-1, respectively. An alkaline water electrolyzer with a two-electrode configuration achieves 10 mA cm-2 at 1.55 V with excellent long-term stability, outperforming the combination of noble metal IrO2 and Pt/C benchmark catalysts. The superior catalytic performance is ascribed to the synergistic effects of particle size, crystallinity, oxygen efficiency, a large number of active sites, and the large specific surface area of the porous inverse opal structure.


Assuntos
Cobalto , Água , Hidrogênio , Ferro , Oxigênio
5.
Nanoscale ; 15(14): 6696-6708, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36938628

RESUMO

Cluster beam deposition is employed for fabricating well-defined bimetallic plasmonic photocatalysts to enhance their activity while facilitating a more fundamental understanding of their properties. AuxAg1-x clusters with compositions (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1) spanning the metals' miscibility range were produced in the gas-phase and soft-landed on TiO2 P25-coated silicon wafers with an optimal coverage of 4 atomic monolayer equivalents. Electron microscopy images show that at this coverage most clusters remain well dispersed whereas EXAFS data are in agreement with the finding that the deposited clusters have an average size of ca. 5 nm and feature the same composition as the ablated alloy targets. A composition-dependant electron transfer from Au to Ag that is likely to impart chemical stability to the bimetallic clusters and protect Ag atoms against oxidation is additionally evidenced by XPS and XANES. Under simulated solar light, AuxAg1-x clusters show a remarkable composition-dependent volcano-type enhancement of their photocatalytic activity towards degradation of stearic acid, a model compound for organic fouling on surfaces. The Formal Quantum Efficiency (FQE) is peaking at the Au0.3Ag0.7 composition with a value that is twice as high as that of the pristine TiO2 P25 under solar simulator. Under UV the FQE of all compositions remains similar to that of pristine TiO2. A classical electromagnetic simulation study confirms that among all compositions Au0.3Ag0.7 features the largest near-field enhancement in the wavelength range of maximal solar light intensity, as well as sufficient individual photon energy resulting in a better photocatalytic self-cleaning activity. This allows ascribing the mechanism for photocatalysis mostly to the plasmonic effect of the bimetallic clusters through direct electron injection and near-field enhancement from the resonant cluster towards the conduction band of TiO2. These results not only demonstrate the added value of using well-defined bimetallic nanocatalysts to enhance their photocatalytic activity but also highlights the potential of the cluster beam deposition to design tailored noble metal modified photocatalytic surfaces with controlled compositions and sizes without involving potentially hazardous chemical agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA