Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Methods ; 20(2): 248-258, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36658278

RESUMO

The expansion of fluorescence bioimaging toward more complex systems and geometries requires analytical tools capable of spanning widely varying timescales and length scales, cleanly separating multiple fluorescent labels and distinguishing these labels from background autofluorescence. Here we meet these challenging objectives for multispectral fluorescence microscopy, combining hyperspectral phasors and linear unmixing to create Hybrid Unmixing (HyU). HyU is efficient and robust, capable of quantitative signal separation even at low illumination levels. In dynamic imaging of developing zebrafish embryos and in mouse tissue, HyU was able to cleanly and efficiently unmix multiple fluorescent labels, even in demanding volumetric timelapse imaging settings. HyU permits high dynamic range imaging, allowing simultaneous imaging of bright exogenous labels and dim endogenous labels. This enables coincident studies of tagged components, cellular behaviors and cellular metabolism within the same specimen, providing more accurate insights into the orchestrated complexity of biological systems.


Assuntos
Peixe-Zebra , Animais , Camundongos , Microscopia de Fluorescência/métodos
2.
Analyst ; 148(23): 5915-5925, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37850265

RESUMO

Multiplexed imaging, which allows for the interrogation of multiple molecular features simultaneously, is vital for addressing numerous challenges across biomedicine. Optically unique surface-enhanced Raman scattering (SERS) nanoparticles (NPs) have the potential to serve as a vehicle to achieve highly multiplexed imaging in a single acquisition, which is non-destructive, quantitative, and simple to execute. When using laser excitation at 785 nm, which allows for a lower background from biological tissues, near infrared (NIR) dyes can be used as Raman reporters to provide high Raman signal intensity due to the resonance effect. This class of imaging agents are known as surface-enhanced resonance Raman scattering (SERRS) NPs. Investigators have predominantly utilized two classes of Raman reporters in their nanoparticle constructs for use in biomedical applications: NIR-resonant and non-resonant Raman reporters. Herein, we investigate the multiplexing potential of five non-resonant SERS: BPE, 44DP, PTT, PODT, and BMMBP, and five NIR resonant SERRS NP flavors with heptamethine cyanine dyes: DTTC, IR-770, IR-780, IR-792, and IR-797, which have been extensively used for biomedical imaging applications. Although SERRS NPs display high Raman intensities, due to their resonance properties, we observed that non-resonant SERS NP concentrations can be quantitated by the intensity of their unique emissions with higher accuracy. Spectral unmixing of five-plex mixtures revealed that the studied non-resonant SERS NPs maintain their detection limits more robustly as compared to the NIR resonant SERRS NP flavors when introducing more components into a mixture.


Assuntos
Nanopartículas , Análise Espectral Raman , Análise Espectral Raman/métodos , Corantes , Diagnóstico por Imagem , Ouro
3.
Proc Natl Acad Sci U S A ; 110(30): 12408-13, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23821752

RESUMO

Raman spectroscopy, amplified by surface enhanced Raman scattering (SERS) nanoparticles, is a molecular imaging modality with ultra-high sensitivity and the unique ability to multiplex readouts from different molecular targets using a single wavelength of excitation. This approach holds exciting prospects for a range of applications in medicine, including identification and characterization of malignancy during endoscopy and intraoperative image guidance of surgical resection. The development of Raman molecular imaging with SERS nanoparticles is presently limited by long acquisition times, poor spatial resolution, small field of view, and difficulty in animal handling with existing Raman spectroscopy instruments. Our goal is to overcome these limitations by designing a bespoke instrument for Raman molecular imaging in small animals. Here, we present a unique and dedicated small-animal Raman imaging instrument that enables rapid, high-spatial resolution, spectroscopic imaging over a wide field of view (> 6 cm(2)), with simplified animal handling. Imaging of SERS nanoparticles in small animals demonstrated that this small animal Raman imaging system can detect multiplexed SERS signals in both superficial and deep tissue locations at least an order of magnitude faster than existing systems without compromising sensitivity.


Assuntos
Análise Espectral Raman/métodos , Animais , Feminino , Camundongos , Camundongos Nus
4.
Proc Natl Acad Sci U S A ; 110(25): E2288-97, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23703909

RESUMO

Endoscopic imaging is an invaluable diagnostic tool allowing minimally invasive access to tissues deep within the body. It has played a key role in screening colon cancer and is credited with preventing deaths through the detection and removal of precancerous polyps. However, conventional white-light endoscopy offers physicians structural information without the biochemical information that would be advantageous for early detection and is essential for molecular typing. To address this unmet need, we have developed a unique accessory, noncontact, fiber optic-based Raman spectroscopy device that has the potential to provide real-time, multiplexed functional information during routine endoscopy. This device is ideally suited for detection of functionalized surface-enhanced Raman scattering (SERS) nanoparticles as molecular imaging contrast agents. This device was designed for insertion through a clinical endoscope and has the potential to detect and quantify the presence of a multiplexed panel of tumor-targeting SERS nanoparticles. Characterization of the Raman instrument was performed with SERS particles on excised human tissue samples, and it has shown unsurpassed sensitivity and multiplexing capabilities, detecting 326-fM concentrations of SERS nanoparticles and unmixing 10 variations of colocalized SERS nanoparticles. Another unique feature of our noncontact Raman endoscope is that it has been designed for efficient use over a wide range of working distances from 1 to 10 mm. This is necessary to accommodate for imperfect centering during endoscopy and the nonuniform surface topology of human tissue. Using this endoscope as a key part of a multiplexed detection approach could allow endoscopists to distinguish between normal and precancerous tissues rapidly and to identify flat lesions that are otherwise missed.


Assuntos
Neoplasias do Colo/patologia , Colonoscopia/instrumentação , Endoscópios , Lesões Pré-Cancerosas/patologia , Análise Espectral Raman/métodos , Pólipos Adenomatosos/patologia , Colo/patologia , Desenho de Equipamento , Humanos , Masculino , Modelos Estatísticos , Nanopartículas , Fibras Ópticas , Projetos Piloto , Quartzo , Espalhamento de Radiação , Sensibilidade e Especificidade
5.
Mol Imaging Biol ; 26(1): 1-16, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37195396

RESUMO

Study of the lymphatic system, compared to that of the other body systems, has been historically neglected. While scientists and clinicians have, in recent decades, gained a better appreciation of the functionality of the lymphatics as well as their role in associated diseases (and consequently investigated these topics further in their experimental work), there is still much left to be understood of the lymphatic system. In this review article, we discuss the role lymphatic imaging techniques have played in this recent series of advancements and how new imaging techniques can help bolster this wave of discovery. We specifically highlight the use of lymphatic imaging techniques in understanding the fundamental anatomy and physiology of the lymphatic system; investigating the development of lymphatic vasculature (using techniques such as intravital microscopy); diagnosing, staging, and treating lymphedema and cancer; and its role in other disease states.


Assuntos
Linfedema , Neoplasias , Humanos , Sistema Linfático/anatomia & histologia , Sistema Linfático/fisiologia , Linfedema/diagnóstico por imagem , Diagnóstico por Imagem , Neoplasias/diagnóstico por imagem , Progressão da Doença , Linfonodos
6.
ACS Appl Mater Interfaces ; 16(13): 15847-15860, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38507685

RESUMO

With their intricate design, nanoparticles (NPs) have become indispensable tools in the quest for precise cellular targeting. Among various NPs, gold NPs stand out with unique features such as chemical stability, biocompatibility, adjustable shape, and size-dependent optical properties, making them particularly promising for molecular detection by leveraging the surface-enhanced Raman scattering (SERS) effect. Their multiplexing abilities for the simultaneous identification of multiple biomarkers are important in the rapidly evolving landscape of diverse cellular phenotypes and biomolecular profiling. However, the challenge is ensuring that SERS NPs can effectively target specific cells and biomarkers among intricate cell types and biomolecules with high specificity. In this study, we improve the functionalization of SERS NPs, optimizing their targeting efficiency in cellular applications for ca. 160 nm NP-based probes. Spherical SERS NPs, conjugated with antibodies targeting epidermal growth factor receptor and human epidermal growth factor receptor 2, were incubated with cells overexpressing these proteins, and their specific binding potential was quantified at each stage by using flow cytometry to achieve optimal targeting efficiency. We determined that maintaining an average of 3.5 × 105 thiols per NP, 300 antibodies per NP, 18,000 NPs per cell, conducting a 15 min staining incubation at 4 °C in a shaker, and using SM(PEG)12 as a cross-linker for the NP conjugation were crucial to achieve the highest targeting efficiency. Fluorescence and Raman imaging were used with these parameters to observe the maximum ability of these NPs to efficiently target suspended cells. These highly sensitive contrast agents demonstrate their pivotal role in effective active targeting, making them invaluable for multiplexing applications across diverse biological environments.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Humanos , Proteínas de Membrana , Nanopartículas/química , Análise Espectral Raman/métodos , Ouro/química , Anticorpos , Nanopartículas Metálicas/química
7.
Microsc Microanal ; 19(5): 1290-7, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23803218

RESUMO

The use of nanoparticles for the diagnosis and treatment of cancer requires the complete characterization of their toxicity, including accurately locating them within biological tissues. Owing to their size, traditional light microscopy techniques are unable to resolve them. Transmission electron microscopy provides the necessary spatial resolution to image individual nanoparticles in tissue, but is severely limited by the very small analysis volume, usually on the order of tens of cubic microns. In this work, we developed a scanning transmission electron microscopy (STEM) approach to analyze large volumes of tissue for the presence of polyethylene glycol-coated Raman-active-silica-gold-nanoparticles (PEG-R-Si-Au-NPs). This approach utilizes the simultaneous bright and dark field imaging capabilities of STEM along with careful control of the image contrast settings to readily identify PEG-R-Si-Au-NPs in mouse liver tissue without the need for additional time-consuming analytical characterization. We utilized this technique to analyze 243,000 mm³ of mouse liver tissue for the presence of PEG-R-Si-Au-NPs. Nanoparticles injected into the mice intravenously via the tail vein accumulated in the liver, whereas those injected intrarectally did not, indicating that they remain in the colon and do not pass through the colon wall into the systemic circulation.


Assuntos
Fígado/ultraestrutura , Microscopia Eletrônica de Transmissão e Varredura/métodos , Nanopartículas/análise , Animais , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/ultraestrutura
8.
Artigo em Inglês | MEDLINE | ID: mdl-38130699

RESUMO

Medical imaging, which empowers the detection of physiological and pathological processes within living subjects, has a vital role in both preclinical and clinical diagnostics. Contrast agents are often needed to accompany anatomical data with functional information or to provide phenotyping of the disease in question. Many newly emerging contrast agents are based on nanomaterials as their high payloads, unique physicochemical properties, improved sensitivity and multimodality capacity are highly desired for many advanced forms of bioimaging techniques and applications. Here, we review the developments in the field of nanomaterial-based contrast agents. We outline important nanomaterial design considerations and discuss the effect on their physicochemical attributes, contrast properties and biological behaviour. We also describe commonly used approaches for formulating, functionalizing and characterizing these nanomaterials. Key applications are highlighted by categorizing nanomaterials on the basis of their X-ray, magnetic, nuclear, optical and/or photoacoustic contrast properties. Finally, we offer our perspectives on current challenges and emerging research topics as well as expectations for future advancements in the field.

9.
Proc Natl Acad Sci U S A ; 106(32): 13511-6, 2009 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-19666578

RESUMO

Raman spectroscopy is a newly developed, noninvasive preclinical imaging technique that offers picomolar sensitivity and multiplexing capabilities to the field of molecular imaging. In this study, we demonstrate the ability of Raman spectroscopy to separate the spectral fingerprints of up to 10 different types of surface enhanced Raman scattering (SERS) nanoparticles in a living mouse after s.c. injection. Based on these spectral results, we simultaneously injected the five most intense and spectrally unique SERS nanoparticles i.v. to image their natural accumulation in the liver. All five types of SERS nanoparticles were successfully identified and spectrally separated using our optimized noninvasive Raman imaging system. In addition, we were able to linearly correlate Raman signal with SERS concentration after injecting four spectrally unique SERS nanoparticles either s.c. (R(2) = 0.998) or i.v. (R(2) = 0.992). These results show great potential for multiplexed imaging in living subjects in cases in which several targeted SERS probes could offer better detection of multiple biomarkers associated with a specific disease.


Assuntos
Imageamento Tridimensional/métodos , Nanopartículas/química , Análise Espectral Raman , Animais , Feminino , Injeções Intravenosas , Injeções Subcutâneas , Fígado/metabolismo , Camundongos , Camundongos Nus , Nanopartículas/administração & dosagem , Propriedades de Superfície
10.
ACS Nano ; 16(7): 10341-10353, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35675533

RESUMO

Profiling the heterogeneous landscape of cell types and biomolecules is rapidly being adopted to address current imperative research questions. Precision medicine seeks advancements in molecular spatial profiling techniques with highly multiplexed imaging capabilities and subcellular resolution, which remains an extremely complex task. Surface-enhanced Raman spectroscopy (SERS) imaging offers promise through the utilization of nanoparticle-based contrast agents that exhibit narrow spectral features and molecular specificity. The current renaissance of gold nanoparticle technology makes Raman scattering intensities competitive with traditional fluorescence methods while offering the added benefit of unsurpassed multiplexing capabilities. Here, we present an expanded library of individually distinct SERS nanoparticles to arm researchers and clinicians. Our nanoparticles consist of a ∼60 nm gold core, a Raman reporter molecule, and a final inert silica coating. Using density functional theory, we have selected Raman reporters that meet the key criterion of high spectral uniqueness to facilitate unmixing of up to 26 components in a single imaging pixel in vitro and in vivo. We also demonstrated the utility of our SERS nanoparticles for targeting cultured cells and profiling cancerous human tissue sections for highly multiplexed optical imaging. This study showcases the far-reaching capabilities of SERS-based Raman imaging in molecular profiling to improve personalized medicine and overcome the major challenges of functional and structural diversity in proteomic imaging.


Assuntos
Ouro , Nanopartículas Metálicas , Humanos , Ouro/química , Nanopartículas Metálicas/química , Proteômica , Análise Espectral Raman/métodos , Diagnóstico por Imagem
11.
Small ; 7(5): 625-33, 2011 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-21302357

RESUMO

The affibody functionalization of fluorescent surface-enhanced Raman scattering gold-silica nanoparticles as multimodal contrast agents for molecular imaging specific to epidermal growth factor receptor (EGFR) is reported. This nanoparticle bioconjugate reports EGFR-positive A431 tumors with a signal nearly 35-fold higher than EGFR-negative MDA-435S tumors. The low-level EGFR expression in adjacent healthy tissue is 7-fold lower than in the positive tumors. Validation via competitive inhibition reduces the signal by a factor of six, and independent measurement of EGFR via flow cytometry correlates at R(2) = 0.92.


Assuntos
Receptores ErbB/análise , Ouro/química , Nanopartículas/química , Dióxido de Silício/química , Análise Espectral Raman , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Humanos , Imagem Molecular
12.
Small ; 7(1): 126-36, 2011 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-21104804

RESUMO

Polyethylene glycol (PEG)ylated Raman-active gold nanoparticles (PEG-R-AuNPs) consist of an interchangeable Raman organic molecule layer held onto a gold nanocore by a silica shell. PEG-R-AuNPs have been shown preclinically to increase the sensitivity and specificity of Raman spectroscopy, with picomolar sensitivity and multiplexing capabilities. Although clinical trials are being designed to use functionalized PEG-R-AuNPs in various applications (e.g., to target dysplastic bowel lesions during colonoscopy), the effects of these nanoparticles on human cells remain unknown. The occurrence and mechanisms underlying any potential cytotoxicity induced by these nanoparticles (0-1000 PEG-R-AuNPs/cell) are investigated in immortalized human HeLa and HepG2 cell lines at several time points (0-48 h) after exposure. Using fluorometric assays, cell viability (MTT), reactive oxygen species (ROS) generation (dichlorofluorescein diacetate), protein oxidation (protein carbonyl content), and total cellular antioxidant concentrations the concentrations (metmyoblobin-induced oxidation of ABTS) are assessed. Analysis of lipid oxidation using an enzyme immunoassay (8-isoprostane concentrations), gene expression of antioxidant enzymes using quantitative reverse transcription polymerase chain reactions, and the intracellular location of PEG-R-AuNPs using transmission electron microscopy is also undertaken. PEG-R-AuNPs cause no cytotoxicity in either HeLa or HepG2 cells in the acute setting as ROS generation is balanced by antioxidant enzyme upregulation. Following prolonged exposures (48 h) at relatively high concentrations (1000 PEG-R-AuNPs/cell), nanoparticles are found within vesicles inside cells. Under these conditions, a minimal amount of cytotoxicity is seen in both cell lines owing to increases in cellular oxidative stress, most likely due to ROS overwhelming the antioxidant defenses. Evidence of oxidative stress-induced damage includes increased lipid and protein oxidation. Although further in vivo toxicity studies are necessary, these initial encouraging results show that PEG-R-AuNPs cause minimal toxicity in human cells in the acute setting, which bodes well for potential future applications of these nanoparticles in living subjects.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Antioxidantes/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Ouro/farmacologia , Células HeLa , Células Hep G2 , Humanos , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo
13.
Small ; 7(15): 2232-40, 2011 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-21608124

RESUMO

Raman imaging offers unsurpassed sensitivity and multiplexing capabilities. However, its limited depth of light penetration makes direct clinical translation challenging. Therefore, a more suitable way to harness its attributes in a clinical setting would be to couple Raman spectroscopy with endoscopy. The use of an accessory Raman endoscope in conjunction with topically administered tumor-targeting Raman nanoparticles during a routine colonoscopy could offer a new way to sensitively detect dysplastic lesions while circumventing Raman's limited depth of penetration and avoiding systemic toxicity. In this study, the natural biodistribution of gold surface-enhanced Raman scattering (SERS) nanoparticles is evaluated by radiolabeling them with (64) Cu and imaging their localization over time using micropositron emission tomography (PET). Mice are injected either intravenously (IV) or intrarectally (IR) with approximately 100 microcuries (µCi) (3.7 megabecquerel (MBq)) of (64) Cu-SERS nanoparticles and imaged with microPET at various time points post injection. Quantitative biodistribution data are obtained as % injected dose per gram (%ID g(-1)) from each organ, and the results correlate well with the corresponding microPET images, revealing that IV-injected mice have significantly higher uptake (p < 0.05) in the liver (5 h = 8.96% ID g(-1); 24 h = 8.27% ID g(-1)) than IR-injected mice (5 h = 0.09% ID g(-1); 24 h = 0.08% ID g(-1)). IR-injected mice show localized uptake in the large intestine (5 h = 10.37% ID g(-1); 24 h = 0.42% ID g(-1)) with minimal uptake in other organs. Raman imaging of excised tissues correlate well with biodistribution data. These results suggest that the topical application of SERS nanoparticles in the mouse colon appears to minimize their systemic distribution, thus avoiding potential toxicity and supporting the clinical translation of Raman spectroscopy as an endoscopic imaging tool.


Assuntos
Endoscopia/métodos , Nanopartículas/química , Animais , Radioisótopos de Cobre/química , Feminino , Camundongos , Camundongos Nus , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Tomografia por Emissão de Pósitrons , Análise Espectral Raman
14.
Artigo em Inglês | MEDLINE | ID: mdl-33938151

RESUMO

Recently, nanoparticles have evolved ubiquitously in therapeutic applications to treat a range of diseases. Despite their regular use as therapeutic agents in the clinic, we have yet to see much progress in their clinical translation as diagnostic imaging agents. Several clinical and preclinical studies support their use as imaging contrast agents, but their use in the clinical setting has been limited to off-label imaging procedures (i.e., Feraheme). Since diagnostic imaging has been historically used as an exploratory tool to rule out disease or to screen patients for various cancers, nanoparticle toxicity remains a concern, especially when introducing exogenous contrast agents into a potentially healthy patient population, perhaps rationalizing why several nano-based therapeutic agents have been clinically translated before nano-based imaging agents. Another potential hindrance toward their clinical translation could be their market potential, as most therapeutic drugs have higher earning potential than small-molecule imaging contrast agents. With these considerations in mind, perhaps a clinical path forward for nano-based imaging contrast agents is to help guide/manage therapy. Several studies have demonstrated the ability of nanoparticles to produce more accurate imaging preoperatively, intraoperatively, and postoperatively. These applications illustrate a more reliable method of cancer detection and treatment that can prevent incomplete tumor resection and incorrect assessment of tumor progression following treatment. The aim of this review is to highlight the research that supports the use of nanoparticles in biomedical imaging applications and offer a new perspective to illustrate how nano-based imaging agents have the potential to better inform therapeutic decisions. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.


Assuntos
Nanopartículas , Neoplasias , Meios de Contraste , Diagnóstico por Imagem , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
15.
J Phys Chem Lett ; 12(23): 5564-5570, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34105967

RESUMO

Multiplexing capabilities and sensitivity of surface-enhanced Raman spectroscopy (SERS) nanoparticles (NPs) are strongly dependent on the selected Raman reporter. These Raman-active molecules are responsible for giving each batch of SERS NPs its unique spectral fingerprint. Herein, we studied four types of SERS NPs, namely, AuNPs labeled with trans-1,2-bis(4-pyridyl)ethylene (BPE), 4,4'-bis(mercaptomethyl)biphenyl (BMMBP), 5-(4-pyridyl)-1,3,4-oxadiazole-2-thiol (PODT), and 5-(4-pyridyl)-1H-1,2,4-triazole-3-thiol (PTT), and demonstrated that the best level of theory could be chosen based on inner products of DFT-calculated and experimental Raman spectra. We also calculated the theoretical spectra of these Raman reporters bound to Au20 clusters to interrogate how SERS enhancement would affect their spectral fingerprint. Importantly, we found a correlation between B3LYP-D3 calculated and experimental enhancement factors, which opens up an avenue toward predicting which Raman reporters could offer improved sensitivity. We observed 0.5 and 3 fM limits of detection for BMMBP- and PTT-labeled 60 nm AuNPs, respectively.


Assuntos
Ouro/análise , Ouro/química , Nanopartículas Metálicas/análise , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Propriedades de Superfície
16.
Biomater Sci ; 9(2): 482-495, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-32812951

RESUMO

Providing physicians with new imaging agents to help detect cancer with better sensitivity and specificity has the potential to significantly improve patient outcomes. Development of new imaging agents could offer improved early cancer detection during routine screening or help surgeons identify tumor margins for surgical resection. In this study, we evaluate the optical properties of a colorful class of dyes and pigments that humans routinely encounter. The pigments are often used in tattoo inks and the dyes are FDA approved for the coloring of foods, drugs, and cosmetics. We characterized their absorption, fluorescence and Raman scattering properties in the hopes of identifying a new panel of dyes that offer exceptional imaging contrast. We found that some of these coloring agents, coined as "optical inks", exhibit a multitude of useful optical properties, outperforming some of the clinically approved imaging dyes on the market. The best performing optical inks (Green 8 and Orange 16) were further incorporated into liposomal nanoparticles to assess their tumor targeting and optical imaging potential. Mouse xenograft models of colorectal, cervical and lymphoma tumors were used to evaluate the newly developed nano-based imaging contrast agents. After intravenous injection, fluorescence imaging revealed significant localization of the new "optical ink" liposomal nanoparticles in all three tumor models as opposed to their neighboring healthy tissues (p < 0.05). If further developed, these coloring agents could play important roles in the clinical setting. A more sensitive imaging contrast agent could enable earlier cancer detection or help guide surgical resection of tumors, both of which have been shown to significantly improve patient survival.


Assuntos
Neoplasias , Tatuagem , Corantes , Meios de Contraste , Humanos , Tinta , Imagem Óptica
17.
Nanomaterials (Basel) ; 10(11)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198113

RESUMO

Gold nanoparticles continue to generate interest for use in several biomedical applications. Recently, researchers have been focusing on exploiting their dual diagnostic/therapeutic theranostic capabilities. Before clinical translation can occur, regulatory agencies will require a greater understanding of their biodistribution and safety profiles post administration. Previously, the real-time identification and tracking of gold nanoparticles in free-flowing vasculature had not been possible without extrinsic labels such as fluorophores. Here, we present a label-free imaging approach to examine gold nanoparticle (AuNP) activity within the vasculature by utilizing multiphoton intravital microscopy. This method employs a commercially available multiphoton microscopy system to visualize the intrinsic luminescent signal produced by a multiphoton absorption-induced luminescence effect observed in single gold nanoparticles at frame rates necessary for capturing real-time blood flow. This is the first demonstration of visualizing unlabeled gold nanoparticles in an unperturbed vascular environment with frame rates fast enough to achieve particle tracking. Nanoparticle blood concentration curves were also evaluated by the tracking of gold nanoparticle flow in vasculature and verified against known pre-injection concentrations. Half-lives of these gold nanoparticle injections ranged between 67 and 140 s. This label-free imaging approach could provide important structural and functional information in real time to aid in the development and effective analysis of new metallic nanoparticles for various clinical applications in an unperturbed environment, while providing further insight into their complex uptake and clearance pathways.

18.
SLAS Technol ; 23(3): 281-293, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29115174

RESUMO

The development of novel nanoparticles consisting of both diagnostic and therapeutic components has increased over the past decade. These "theranostic" nanoparticles have been tailored toward one or more types of imaging modalities and have been developed for optical imaging, magnetic resonance imaging, ultrasound, computed tomography, and nuclear imaging comprising both single-photon computed tomography and positron emission tomography. In this review, we focus on state-of-the-art theranostic nanoparticles that are capable of both delivering therapy and self-reporting/tracking disease through imaging. We discuss challenges and the opportunity to rapidly adjust treatment for individualized medicine.


Assuntos
Nanopartículas , Nanotecnologia/tendências , Nanomedicina Teranóstica , Animais , Diagnóstico por Imagem , Humanos , Imageamento por Ressonância Magnética , Monitorização Fisiológica , Imagem Óptica , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X , Ultrassonografia
19.
Nanomaterials (Basel) ; 8(11)2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30463284

RESUMO

Raman spectroscopic imaging has shown great promise for improved cancer detection and localization with the use of tumor targeting surface enhanced Raman scattering (SERS) nanoparticles. With the ultrasensitive detection and multiplexing capabilities that SERS imaging has to offer, scientists have been investigating several clinical applications that could benefit from this unique imaging strategy. Recently, there has been a push to develop new image-guidance tools for surgical resection to help surgeons sensitively and specifically identify tumor margins in real time. We hypothesized that SERS nanoparticles (NPs) topically applied to breast cancer resection margins have the potential to provide real-time feedback on the presence of residual cancer in the resection margins during lumpectomy. Here, we explore the ability of SERS nanoparticles conjugated with a cluster of differentiation-47 (CD47) antibody to target breast cancer. CD47 is a cell surface receptor that has recently been shown to be overexpressed on several solid tumor types. The binding potential of our CD47-labeled SERS nanoparticles was assessed using fluorescence assisted cell sorting (FACS) on seven different human breast cancer cell lines, some of which were triple negative (negative expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2)). Xenograft mouse models were also used to assess the ability of our Raman imaging system to identify tumor from normal tissue. A ratiometric imaging strategy was used to quantify specific vs. nonspecific probe binding, resulting in improved tumor-to-background ratios. FACS analysis showed that CD47-labeled SERS nanoparticles bound to seven different breast cancer cell lines at levels 12-fold to 70-fold higher than isotype control-labeled nanoparticles (p < 0.01), suggesting that our CD47-targeted nanoparticles actively bind to CD47 on breast cancer cells. In a mouse xenograft model of human breast cancer, topical application of CD47-targeted nanoparticles to excised normal and cancer tissue revealed increased binding of CD47-targeted nanoparticles on tumor relative to normal adjacent tissue. The findings of this study support further investigation and suggest that SERS nanoparticles topically applied to breast cancer could guide more complete surgical resection during lumpectomy.

20.
Int J Pharm ; 337(1-2): 316-28, 2007 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-17276633

RESUMO

The goal of this study was to determine the distribution of the avidin/biotin-liposome system in an ovarian cancer xenograft model. Optimal avidin/biotin-liposome injection sequence with enhanced liposome accumulation to the peritoneum was determined. Two weeks after NIH:OVCAR-3 cell inoculation, rats were divided into three groups. Group 1 (B-A) (n=4), received an intraperitoneal injection of (99m)Tc-blue-biotin-liposomes 30 min before an intraperitoneal injection of avidin. Group 2 (A-B) (n=4), received an intraperitoneal injection of avidin 30 min before an intraperitoneal injection of (99m)Tc-blue-biotin-liposomes. Group 3 (A-B 2h) (n=5), received an intraperitoneal injection of avidin 2h before an intraperitoneal injection of (99m)Tc-blue-biotin-liposomes. Three additional non-tumor nude rats served as controls in each group, and were subjected to the same injection sequences. Scintigraphic imaging commenced at various times post (99m)Tc-blue-biotin-liposome injection. After imaging, rats were euthanized at 23 h post-liposome injection for tissue biodistribution. Images showed no apparent difference in liposome distribution between control and tumor animals. Regional uptake analysis at 4h for tumor rats showed significantly higher lymphatic channel uptake in the A-B 2h group (p<0.05) and a trend of increased peritoneal uptake in A-B group. By 22 h, peritoneal and lymphatic channel uptake was similar for all groups. At necropsy, most activity was found in blue-stained omentum, diaphragm, mediastinal and abdominal nodes. Bowel activity was minimal. These results correlate with previous normal rat studies, and demonstrate potential use of this avidin/biotin-liposome system for prolonging drug delivery to the peritoneal cavity and associating lymph nodes in this ovarian cancer xenograft model.


Assuntos
Avidina/metabolismo , Biotina/metabolismo , Lipídeos/química , Lipossomos , Neoplasias Experimentais/metabolismo , Neoplasias Ovarianas/metabolismo , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacocinética , Avidina/química , Biotina/química , Linhagem Celular Tumoral , Corantes/administração & dosagem , Corantes/química , Corantes/farmacocinética , Preparações de Ação Retardada , Composição de Medicamentos , Feminino , Injeções Intraperitoneais , Linfonodos/diagnóstico por imagem , Linfonodos/metabolismo , Camundongos , Camundongos Nus , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Ovarianas/diagnóstico por imagem , Cavidade Peritoneal/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Ratos , Ratos Nus , Reprodutibilidade dos Testes , Corantes de Rosanilina/administração & dosagem , Corantes de Rosanilina/química , Corantes de Rosanilina/farmacocinética , Tecnécio , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA