Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharm Res ; 35(9): 171, 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-29967941

RESUMO

PURPOSE: This paper is based on the characterization of the rheological and Low Field NMR (LF-NMR) properties of an interpenetrated hydrogel made up by poly(N-vinyl-2-pyrrolidone) and sodium alginate. The final aim is to use the hydrogel as a delivery matrix for liposomes, widely used tools in the drug delivery field. METHODS: Rheology, LF-NMR, TEM, cryo-TEM, confocal laser scanning microscopy and release test were employed to characterize the interpenetrated hydrogel. Different theoretical approaches such as Flory, Chui, Scherer and Schurz theories were used to interpret the experimental results. RESULTS: We found that the crosslinking mechanisms of the two polymers produced an anti-synergistic effect on the final mechanical properties of the interpenetrated hydrogel. Instead of creating a continuous network, alginate formed isolated, cross-linked, clusters embedded in a continuous network of poly(N-vinyl-2-pyrrolidone). Additionally, gel structure significantly influenced liposome delivery. CONCLUSIONS: The rheological and LF-NMR characterization were confirmed and supported by the independent techniques TEM, cryo-TEM and release tests Thus, our findings reiterate the potentiality of both rheology and LF-NMR for the characterisation of soft materials such as interpenetrated polymeric networks.


Assuntos
Alginatos/química , Hidrogéis/química , Povidona/química , Sistemas de Liberação de Medicamentos/métodos , Lipossomos/administração & dosagem , Espectroscopia de Ressonância Magnética/métodos , Reologia/métodos
2.
Gels ; 5(2)2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31003517

RESUMO

BACKGROUND: The new concepts of personalized and precision medicine require the design of more and more refined delivery systems. In this frame, hydrogels can play a very important role as they represent the best surrogate of soft living tissues for what concerns rheological properties. Thus, this paper focusses on a global theoretical approach able to describe how hydrogel polymeric networks can affect the release kinetics of drugs characterized by different sizes. The attention is focused on a case study dealing with an interpenetrated hydrogel made up by alginate and poly(N-vinyl-2-pyrrolidone). METHODS: Information about polymeric network characteristics (mesh size distribution and polymer volume fraction) is deduced from the theoretical interpretation of the rheological and the low field Nuclear Magnetic Resonance (NMR) characterization of hydrogels. This information is then, embodied in the mass balance equation whose resolution provides the release kinetics. RESULTS: Our simulations indicate the influence of network characteristics on release kinetics. In addition, the reliability of the proposed approach is supported by the comparison of the model outcome with experimental release data. CONCLUSIONS: This study underlines the necessity of a global theoretical approach in order to design reliable delivery systems based on hydrogels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA