Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Carcinogenesis ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046922

RESUMO

Welding fumes are a Group 1 (carcinogenic to humans) carcinogen as classified by the International Agency for Research on Cancer. The process of welding creates inhalable fumes rich in iron (Fe) that may also contain known carcinogenic metals such as chromium (Cr) and nickel (Ni). Epidemiological evidence has shown that both mild-steel (Fe-rich) and stainless steel (Fe-rich + Cr + Ni) welding fume exposure increase lung cancer risk, and experimental animal data support these findings. Copper-nickel (CuNi) welding processes have not been investigated in the context of lung cancer. Cu is intriguing, however, given the role of Cu in carcinogenesis and cancer therapeutics. This study examines the potential for a CuNi fume to induce mechanistic key characteristics of carcinogenesis in vitro and to promote lung tumorigenesis, using a two-stage mouse bioassay, in vivo. Male A/J mice, initiated with 3-methylcholanthrene (MCA; 10 µg/g), were exposed to CuNi fumes or air by whole-body inhalation for nine weeks (low-deposition-LD and high deposition-HD) then sacrificed at 30 weeks. In BEAS-2B cells, the CuNi fume induced micronuclei and caused DNA damage as measured by γ-H2AX. The fume exhibited high reactivity and a dose response in cytotoxicity and oxidative stress. In vivo, MCA/CuNi HD and LD significantly decreased lung tumor size and adenomas. MCA/CuNi HD exposure significantly decreased gross-evaluated tumor number. In summary, the CuNi fume in vitro exhibited characteristics of a carcinogen, but in vivo the exposure resulted in smaller tumors, fewer adenomas, less hyperplasia severity, and with the HD exposure, less overall lung lesion/tumors.

2.
Arch Toxicol ; 96(12): 3201-3217, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35984461

RESUMO

Thermal spray coating is an industrial process in which molten metal is sprayed at high velocity onto a surface as a protective coating. An automated electric arc wire thermal spray coating aerosol generator and inhalation exposure system was developed to simulate an occupational exposure and, using this system, male Sprague-Dawley rats were exposed to stainless steel PMET720 aerosols at 25 mg/m3 × 4 h/day × 9 day. Lung injury, inflammation, and cytokine alteration were determined. Resolution was assessed by evaluating these parameters at 1, 7, 14 and 28 d after exposure. The aerosols generated were also collected and characterized. Macrophages were exposed in vitro over a wide dose range (0-200 µg/ml) to determine cytotoxicity and to screen for known mechanisms of toxicity. Welding fumes were used as comparative particulate controls. In vivo lung damage, inflammation and alteration in cytokines were observed 1 day post exposure and this response resolved by day 7. Alveolar macrophages retained the particulates even after 28 day post-exposure. In line with the pulmonary toxicity findings, in vitro cytotoxicity and membrane damage in macrophages were observed only at the higher doses. Electron paramagnetic resonance showed in an acellular environment the particulate generated free radicals and a dose-dependent increase in intracellular oxidative stress and NF-kB/AP-1 activity was observed. PMET720 particles were internalized via clathrin and caveolar mediated endocytosis as well as actin-dependent pinocytosis/phagocytosis. The results suggest that compared to stainless steel welding fumes, the PMET 720 aerosols were not as overtly toxic, and the animals recovered from the acute pulmonary injury by 7 days.


Assuntos
Poluentes Ocupacionais do Ar , Soldagem , Ratos , Animais , Masculino , Aço Inoxidável/toxicidade , Poluentes Ocupacionais do Ar/toxicidade , NF-kappa B , Actinas , Fator de Transcrição AP-1 , Ratos Sprague-Dawley , Aerossóis e Gotículas Respiratórios , Soldagem/métodos , Exposição por Inalação/efeitos adversos , Pulmão , Poeira , Inflamação/patologia , Citocinas , Clatrina/farmacologia
3.
Inhal Toxicol ; 34(9-10): 275-286, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35724235

RESUMO

Objective: Stainless steel welding creates fumes rich in carcinogenic metals such as chromium (Cr). Welding consumables devoid of Cr are being produced in an attempt to limit worker exposures to toxic and carcinogenic metals. The study objective was to characterize a copper-nickel (Cu-Ni) fume generated using gas metal arc welding (GMAW) and determine the pulmonary deposition and toxicity of the fume in mice exposed by inhalation. Materials and Methods: Male A/J mice (6-8 weeks of age) were exposed to air or Cu-Ni welding fumes for 2 (low deposition) or 4 (high deposition) hours/day for 10 days. Mice were sacrificed, and bronchoalveolar lavage (BAL), macrophage function, and histopathological analyses were performed at different timepoints post-exposure to evaluate resolution. Results and Discussion: Characterization of the fume indicated that most of the particles were between 0.1 and 1 µm in diameter, with a mass median aerodynamic diameter of 0.43 µm. Metal content of the fume was Cu (∼76%) and Ni (∼12%). Post-exposure, BAL macrophages had a reduced ability to phagocytose E. coli, and lung cytotoxicity was evident and significant (>12%-19% fold change). Loss of body weight was also significant at the early timepoints. Lung inflammation, the predominant finding identified by histopathology, was observed as a subacute response early that progressively resolved by 28 days with only macrophage aggregates remaining late (84 days). Conclusions: Overall, there was high acute lung toxicity with a resolution of the response in mice which suggests that the Cu-Ni fume may not be ideal for reducing toxic and inflammatory lung effects.


Assuntos
Poluentes Ocupacionais do Ar , Soldagem , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/toxicidade , Animais , Cromo , Cobre/toxicidade , Escherichia coli , Gases/análise , Gases/farmacologia , Pulmão , Masculino , Metais , Camundongos , Níquel/toxicidade , Soldagem/métodos
4.
Inhal Toxicol ; 34(3-4): 51-67, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35294311

RESUMO

Humans will set foot on the Moon again soon. The lunar dust (LD) is potentially reactive and could pose an inhalation hazard to lunar explorers. We elucidated LD toxicity and investigated the toxicological impact of particle surface reactivity (SR) using three LDs, quartz, and TiO2. We first isolated the respirable-size-fraction of an Apollo-14 regolith and ground two coarser samples to produce fine LDs with increased SR. SR measurements of these five respirable-sized dusts, determined by their in-vitro ability to generate hydroxyl radicals (•OH), showed that ground LDs > unground LD ≥ TiO2 ≥ quartz. Rats were each intratracheally instilled with 0, 1, 2.5, or 7.5 mg of a test dust. Toxicity biomarkers and histopathology were assessed up to 13 weeks after the bolus instillation. All dusts caused dose-dependent-increases in pulmonary lesions and toxicity biomarkers. The three LDs, which possessed mineral compositions/properties similar to Arizona volcanic ash, were moderately toxic. Despite a 14-fold •OH difference among these three LDs, their toxicities were indistinguishable. Quartz produced the lowest •OH amount but showed the greatest toxicity. Our results showed no correlation between the toxicity of mineral dusts and their ability to generate free radicals. We also showed that the amounts of oxidants per neutrophil increased with doses, time and the cytotoxicity of the dusts in the lung, which supports our postulation that dust-elicited neutrophilia is the major persistent source of oxidative stress. These results and the discussion of the crucial roles of the short-lived, continuously replenished neutrophils in dust-induced pathogenesis are presented.


Assuntos
Poeira , Pneumopatias , Animais , Biomarcadores , Poeira/análise , Pneumopatias/induzido quimicamente , Lua , Oxidantes/toxicidade , Quartzo/toxicidade , Ratos , Dióxido de Silício/toxicidade , Titânio
5.
Part Fibre Toxicol ; 16(1): 20, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142334

RESUMO

BACKGROUND: The mechanisms driving systemic effects consequent pulmonary nanoparticle exposure remain unclear. Recent work has established the existence of an indirect process by which factors released from the lung into the circulation promote systemic inflammation and cellular dysfunction, particularly on the vasculature. However, the composition of circulating contributing factors and how they are produced remains unknown. Evidence suggests matrix protease involvement; thus, here we used a well-characterized multi-walled carbon nanotube (MWCNT) oropharyngeal aspiration model with known vascular effects to assess the distinct contribution of nanoparticle-induced peptide fragments in driving systemic pathobiology. RESULTS: Data-independent mass spectrometry enabled the unbiased quantitative characterization of 841 significant MWCNT-responses within an enriched peptide fraction, with 567 of these factors demonstrating significant correlation across animal-paired bronchoalveolar lavage and serum biofluids. A database search curated for known matrix protease substrates and predicted signaling motifs enabled identification of 73 MWCNT-responsive peptides, which were significantly associated with an abnormal cardiovascular phenotype, extracellular matrix organization, immune-inflammatory processes, cell receptor signaling, and a MWCNT-altered serum exosome population. Production of a diverse peptidomic response was supported by a wide number of upregulated matrix and lysosomal proteases in the lung after MWCNT exposure. The peptide fraction was then found bioactive, producing endothelial cell inflammation and vascular dysfunction ex vivo akin to that induced with whole serum. Results implicate receptor ligand functionality in driving systemic effects, exemplified by an identified 59-mer thrombospondin fragment, replete with CD36 modulatory motifs, that when synthesized produced an anti-angiogenic response in vitro matching that of the peptide fraction. Other identified peptides point to integrin ligand functionality and more broadly to a diversity of receptor-mediated bioactivity induced by the peptidomic response to nanoparticle exposure. CONCLUSION: The present study demonstrates that pulmonary-sequestered nanoparticles, such as multi-walled carbon nanotubes, acutely upregulate a diverse profile of matrix proteases, and induce a complex peptidomic response across lung and blood compartments. The serum peptide fraction, having cell-surface receptor ligand properties, conveys peripheral bioactivity in promoting endothelial cell inflammation, vasodilatory dysfunction and inhibiting angiogenesis. Results here establish peptide fragments as indirect, non-cytokine mediators and putative biomarkers of systemic health outcomes from nanoparticle exposure.


Assuntos
Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Fragmentos de Peptídeos/sangue , Animais , Biomarcadores/sangue , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/metabolismo , Células Endoteliais/imunologia , Endotélio Vascular/imunologia , Endotélio Vascular/fisiopatologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/imunologia , Expressão Gênica/efeitos dos fármacos , Inflamação , Pulmão/imunologia , Pulmão/metabolismo , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Nanotubos de Carbono/química
6.
Toxicol Pathol ; 46(1): 14-27, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28934917

RESUMO

Recent experimental evidence indicates significant pulmonary toxicity of multiwalled carbon nanotubes (MWCNTs), such as inflammation, interstitial fibrosis, granuloma formation, and carcinogenicity. Although numerous studies explored the adverse potential of various CNTs, their comparability is often limited. This is due to differences in administered dose, physicochemical characteristics, exposure methods, and end points monitored. Here, we addressed the problem through sparse classification method, a supervised machine learning approach that can reduce the noise contained in redundant variables for discriminating among MWCNT-exposed and MWCNT-unexposed groups. A panel of proteins measured from bronchoalveolar lavage fluid (BAL) samples was used to predict exposure to various MWCNT and determine markers that are attributable to MWCNT exposure and toxicity in mice. Using sparse support vector machine-based classification technique, we identified a small subset of proteins clearly distinguishing each exposure. Macrophage-derived chemokine (MDC/CCL22), in particular, was associated with various MWCNT exposures and was independent of exposure method employed, that is, oropharyngeal aspiration versus inhalation exposure. Sustained expression of some of the selected protein markers identified also suggests their potential role in MWCNT-induced toxicity and proposes hypotheses for future mechanistic studies. Such approaches can be used more broadly for nanomaterial risk profiling studies to evaluate decisions related to dose/time-response relationships that could delineate experimental variables from exposure markers.


Assuntos
Biomarcadores/análise , Nanotubos de Carbono/toxicidade , Máquina de Vetores de Suporte , Animais , Líquido da Lavagem Broncoalveolar/química , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
Toxicol Appl Pharmacol ; 326: 1-6, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28411035

RESUMO

Welding fume inhalation causes pulmonary toxicity, including susceptibility to infection. We hypothesized that airway epithelial ion transport is a target of fume toxicity, and investigated the effects of fume particulates from manual metal arc-stainless steel (MMA-SS) and gas metal arc-mild steel (GMA-MS) on ion transport in normal human bronchial epithelium (NHBE) cultured in air-interface. MMA-SS particles, more soluble than GMA-MS particles, contain Cr, Ni, Fe and Mn; GMA-MS particles contain Fe and Mn. MMA-SS or GMA-MS particles (0.0167-166.7µg/cm2) were applied apically to NHBEs. After 18h transepithelial potential difference (Vt), resistance (Rt), and short circuit current (Isc) were measured. Particle effects on Na+ and Cl¯ channels and the Na+,K+,2Cl¯-cotransporter were evaluated using amiloride (apical), 5-nitro-2-[(3-phenylpropyl)amino]benzoic acid (NPPB, apical), and bumetanide (basolateral), respectively. MMA-SS (0.0167-16.7µg/cm2) increased basal Vt. Only 16.7µg/cm2 GMA-MS increased basal Vt significantly. MMA-SS or GMA-MS exposure potentiated Isc responses (decreases) to amiloride and bumetanide, while not affecting those to NPPB, GMA-MS to a lesser degree than MMA-SS. Variable effects on Rt were observed in response to amiloride, and bumetanide. Generally, MMA-SS was more potent in altering responses to amiloride and bumetanide than GMA-MS. Hyperpolarization occurred in the absence of LDH release, but decreases in Vt, Rt, and Isc at higher fume particulate doses accompanied LDH release, to a greater extent for MMA-SS. Thus, Na+ transport and Na+,K+,2Cl¯-cotransport are affected by fume exposure; MMA-MS is more potent than GMA-MS. Enhanced Na+ absorption and decreased airway surface liquid could compromise defenses against infection.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Brônquios/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Agonistas do Canal de Sódio Epitelial/toxicidade , Canais Epiteliais de Sódio/efeitos dos fármacos , Simportadores de Cloreto de Sódio-Potássio/efeitos dos fármacos , Aço/toxicidade , Soldagem , Brônquios/metabolismo , Brônquios/patologia , Células Cultivadas , Canais de Cloreto/efeitos dos fármacos , Canais de Cloreto/metabolismo , Relação Dose-Resposta a Droga , Impedância Elétrica , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Canais Epiteliais de Sódio/metabolismo , Gases , Humanos , Exposição por Inalação/efeitos adversos , Transporte de Íons/efeitos dos fármacos , L-Lactato Desidrogenase/metabolismo , Potenciais da Membrana , Exposição Ocupacional/efeitos adversos , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Aço Inoxidável/toxicidade , Fatores de Tempo
8.
Arch Toxicol ; 91(8): 2953-2962, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28054104

RESUMO

Epidemiologic studies suggest an increased risk of lung cancer with exposure to welding fumes, but controlled animal studies are needed to support this association. Oropharyngeal aspiration of collected "aged" gas metal arc-stainless steel (GMA-SS) welding fume has been shown by our laboratory to promote lung tumor formation in vivo using a two-stage initiation-promotion model. Our objective in this study was to determine whether inhalation of freshly generated GMA-SS welding fume also acts as a lung tumor promoter in lung tumor-susceptible mice. Male A/J mice received intraperitoneal (IP) injections of corn oil or the chemical initiator 3-methylcholanthrene (MCA; 10 µg/g) and 1 week later were exposed by whole-body inhalation to air or GMA-SS welding aerosols for 4 h/d × 4 d/w × 9 w at a target concentration of 40 mg/m3. Lung nodules were enumerated at 30 weeks post-initiation. GMA-SS fume significantly promoted lung tumor multiplicity in A/J mice initiated with MCA (16.11 ± 1.18) compared to MCA/air-exposed mice (7.93 ± 0.82). Histopathological analysis found that the increased number of lung nodules in the MCA/GMA-SS group were hyperplasias and adenomas, which was consistent with developing lung tumorigenesis. Metal deposition analysis in the lung revealed a lower deposited dose, approximately fivefold compared to our previous aspiration study, still elicited a significant lung tumorigenic response. In conclusion, this study demonstrates that inhaling GMA-SS welding fume promotes lung tumorigenesis in vivo which is consistent with the epidemiologic studies that show welders may be at an increased risk for lung cancer.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Exposição por Inalação/efeitos adversos , Neoplasias Pulmonares/induzido quimicamente , Soldagem , Administração por Inalação , Animais , Modelos Animais de Doenças , Neoplasias Pulmonares/patologia , Masculino , Metilcolantreno/administração & dosagem , Camundongos , Camundongos Endogâmicos , Doenças Profissionais/etiologia , Doenças Profissionais/patologia , Exposição Ocupacional/efeitos adversos , Aço Inoxidável/toxicidade
9.
J Allergy Clin Immunol ; 137(2): 527-534.e7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26277596

RESUMO

BACKGROUND: Welders are at increased risk of pneumococcal pneumonia. The mechanism for this association is not known. The capacity of pneumococci to adhere to and infect lower airway cells is mediated by host-expressed platelet-activating factor receptor (PAFR). OBJECTIVE: We sought to assess the effect of mild steel welding fumes (MS-WF) on PAFR-dependent pneumococcal adhesion and infection to human airway cells in vitro and on pneumococcal airway infection in a mouse model. METHODS: The oxidative potential of MS-WF was assessed by their capacity to reduce antioxidants in vitro. Pneumococcal adhesion and infection of A549, BEAS-2B, and primary human bronchial airway cells were assessed by means of quantitative bacterial culture and expressed as colony-forming units (CFU). After intranasal instillation of MS-WF, mice were infected with Streptococcus pneumoniae, and bronchoalveolar lavage fluid (BALF) and lung CFU values were determined. PAFR protein levels were assessed by using immunofluorescence and immunohistochemistry, and PAFR mRNA expression was assessed by using quantitative PCR. PAFR was blocked by CV-3988, and oxidative stress was attenuated by N-acetylcysteine. RESULTS: MS-WF exhibited high oxidative potential. In A549 and BEAS-2B cells MS-WF increased pneumococcal adhesion and infection and PAFR protein expression. Both CV-3988 and N-acetylcysteine reduced MS-WF-stimulated pneumococcal adhesion and infection of airway cells. MS-WF increased mouse lung PAFR mRNA expression and increased BALF and lung pneumococcal CFU values. In MS-WF-exposed mice CV-3988 reduced BALF CFU values. CONCLUSIONS: Hypersusceptibility of welders to pneumococcal pneumonia is in part mediated by the capacity of welding fumes to increase PAFR-dependent pneumococcal adhesion and infection of lower airway cells.


Assuntos
Exposição Ocupacional/efeitos adversos , Pneumonia Pneumocócica/etiologia , Pneumonia Pneumocócica/microbiologia , Streptococcus pneumoniae , Soldagem , Animais , Aderência Bacteriana , Carga Bacteriana , Líquido da Lavagem Broncoalveolar , Linhagem Celular , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Expressão Gênica , Intoxicação por Metais Pesados , Humanos , Camundongos , Estresse Oxidativo , Glicoproteínas da Membrana de Plaquetas/genética , Glicoproteínas da Membrana de Plaquetas/metabolismo , Pneumonia Pneumocócica/metabolismo , Intoxicação , RNA Mensageiro/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/microbiologia
10.
Inhal Toxicol ; 28(9): 410-20, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27251196

RESUMO

Pulmonary toxicity studies often use bronchoalveolar lavage (BAL) to investigate potential adverse lung responses to a particulate exposure. The BAL cellular fraction is counted, using automated (i.e. Coulter Counter®), flow cytometry or manual (i.e. hemocytometer) methods, to determine inflammatory cell influx. The goal of the study was to compare the different counting methods to determine which is optimal for examining BAL cell influx after exposure by inhalation or intratracheal instillation (ITI) to different particles with varying inherent pulmonary toxicities in both rat and mouse models. General findings indicate that total BAL cell counts using the automated and manual methods tended to agree after inhalation or ITI exposure to particle samples that are relatively nontoxic or at later time points after exposure to a pneumotoxic particle when the response resolves. However, when the initial lung inflammation and cytotoxicity was high after exposure to a pneumotoxic particle, significant differences were observed when comparing cell counts from the automated, flow cytometry and manual methods. When using total BAL cell count for differential calculations from the automated method, depending on the cell diameter size range cutoff, the data suggest that the number of lung polymorphonuclear leukocytes (PMN) varies. Importantly, the automated counts, regardless of the size cutoff, still indicated a greater number of total lung PMN when compared with the manual method, which agreed more closely with flow cytometry. The results suggest that either the manual method or flow cytometry would be better suited for BAL studies where cytotoxicity is an unknown variable.


Assuntos
Líquido da Lavagem Broncoalveolar/citologia , Contagem de Células/métodos , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Projetos de Pesquisa/normas , Testes de Toxicidade/métodos , Poluentes Atmosféricos/toxicidade , Animais , Citometria de Fluxo , Modelos Lineares , Pulmão/patologia , Masculino , Metais/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Material Particulado/toxicidade , Ratos , Ratos Sprague-Dawley
11.
Am J Physiol Heart Circ Physiol ; 309(12): H2017-30, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26497962

RESUMO

Throughout the United States, air pollution correlates with adverse health outcomes, and cardiovascular disease incidence is commonly increased following environmental exposure. In areas surrounding active mountaintop removal mines (MTM), a further increase in cardiovascular morbidity is observed and may be attributed in part to particulate matter (PM) released from the mine. The mitochondrion has been shown to be central in the etiology of many cardiovascular diseases, yet its roles in PM-related cardiovascular effects are not realized. In this study, we sought to elucidate the cardiac processes that are disrupted following exposure to mountaintop removal mining particulate matter (PM MTM). To address this question, we exposed male Sprague-Dawley rats to PM MTM, collected within one mile of an active MTM site, using intratracheal instillation. Twenty-four hours following exposure, we evaluated cardiac function, apoptotic indices, and mitochondrial function. PM MTM exposure elicited a significant decrease in ejection fraction and fractional shortening compared with controls. Investigation into the cellular impacts of PM MTM exposure identified a significant increase in mitochondrial-induced apoptotic signaling, as reflected by an increase in TUNEL-positive nuclei and increased caspase-3 and -9 activities. Finally, a significant increase in mitochondrial transition pore opening leading to decreased mitochondrial function was identified following exposure. In conclusion, our data suggest that pulmonary exposure to PM MTM increases cardiac mitochondrial-associated apoptotic signaling and decreases mitochondrial function concomitant with decreased cardiac function. These results suggest that increased cardiovascular disease incidence in populations surrounding MTM mines may be associated with increased cardiac cell apoptotic signaling and decreased mitochondrial function.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Poluição do Ar/efeitos adversos , Cardiopatias/induzido quimicamente , Doenças Mitocondriais/induzido quimicamente , Material Particulado/toxicidade , Animais , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Ecocardiografia , Exposição Ambiental , Monitoramento Ambiental , Cardiopatias/diagnóstico por imagem , Marcação In Situ das Extremidades Cortadas , Injeções Espinhais , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Doenças Mitocondriais/diagnóstico por imagem , Contração Miocárdica/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
12.
Part Fibre Toxicol ; 11: 34, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25123171

RESUMO

Welding fume is an exposure that consists of a mixture of metal-rich particulate matter with gases (ozone, carbon monoxide) and/or vapors (VOCs). Data suggests that welders are immune compromised. Given the inability of pulmonary leukocytes to properly respond to a secondary infection in animal models, the question arose whether the dysfunction persisted systemically. Our aim was to evaluate the circulating leukocyte population in terms of cellular activation, presence of oxidative stress, and functionality after a secondary challenge, following welding fume exposure. Rats were intratracheally instilled (ITI) with PBS or 2 mg of welding fume collected from a stainless steel weld. Rats were sacrificed 4 and 24 h post-exposure and whole blood was collected. Whole blood was used for cellular differential counts, RNA isolation with subsequent microarray and Ingenuity Pathway Analysis, and secondary stimulation with LPS utilizing TruCulture technology. In addition, mononuclear cells were isolated 24 h post-exposure to measure oxidative stress by flow cytometry and confocal microscopy. Welding fume exposure had rapid effects on the circulating leukocyte population as identified by relative mRNA expression changes. Instillation of welding fume reduced inflammatory protein production of circulating leukocytes when challenged with the secondary stimulus LPS. The effects were not related to transcription, but were observed in conjunction with oxidative stress. These findings support previous studies of an inadequate pulmonary immune response following a metal-rich exposure and extend those findings showing leukocyte dysfunction occurs systemically.


Assuntos
Exposição por Inalação/efeitos adversos , Leucócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/toxicidade , Aço Inoxidável/toxicidade , Soldagem , Animais , Células Cultivadas , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Hospedeiro Imunocomprometido , Mediadores da Inflamação/metabolismo , Leucócitos/imunologia , Leucócitos/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Fatores de Tempo , Transcrição Gênica
13.
Inhal Toxicol ; 26(12): 720-32, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25265048

RESUMO

Welding generates complex metal aerosols, inhalation of which is linked to adverse health effects among welders. An important health concern of welding fume (WF) exposure is neurological dysfunction akin to Parkinson's disease (PD). Some applications in manufacturing industry employ a variant welding technology known as "weld-bonding" that utilizes resistance spot welding, in combination with adhesives, for metal-to-metal welding. The presence of adhesives raises additional concerns about worker exposure to potentially toxic components like Methyl Methacrylate, Bisphenol A and volatile organic compounds (VOCs). Here, we investigated the potential neurotoxicological effects of exposure to welding aerosols generated during weld-bonding. Male Sprague-Dawley rats were exposed (25 mg/m³ targeted concentration; 4 h/day × 13 days) by whole-body inhalation to filtered air or aerosols generated by either weld-bonding with sparking (high metal, low VOCs; HM) or without sparking (low metal; high VOCs; LM). Fumes generated under these conditions exhibited complex aerosols that contained both metal oxide particulates and VOCs. LM aerosols contained a greater fraction of VOCs than HM, which comprised largely metal particulates of ultrafine morphology. Short-term exposure to LM aerosols caused distinct changes in the levels of the neurotransmitters, dopamine (DA) and serotonin (5-HT), in various brain areas examined. LM aerosols also specifically decreased the mRNA expression of the olfactory marker protein (Omp) and tyrosine hydroxylase (Th) in the olfactory bulb. Consistent with the decrease in Th, LM also reduced the expression of dopamine transporter (Slc6a3; Dat), as well as, dopamine D2 receptor (Drd2) in the olfactory bulb. In contrast, HM aerosols induced the expression of Th and dopamine D5 receptor (Drd5) mRNAs, elicited neuroinflammation and blood-brain barrier-related changes in the olfactory bulb, but did not alter the expression of Omp. Our findings divulge the differential effects of LM and HM aerosols in the brain and suggest that exposure to weld-bonding aerosols can potentially elicit neurotoxicity following a short-term exposure. However, further investigations are warranted to determine if the aerosols generated by weld-bonding can contribute to persistent long-term neurological deficits and/or neurodegeneration.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Química Encefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Exposição por Inalação/efeitos adversos , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas/metabolismo , Soldagem , Adesivos/química , Aerossóis , Poluentes Ocupacionais do Ar/química , Animais , Biomarcadores/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/metabolismo , Encéfalo/imunologia , Encéfalo/metabolismo , Incêndios , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/imunologia , Neurônios/metabolismo , Síndromes Neurotóxicas/imunologia , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/imunologia , Bulbo Olfatório/metabolismo , Oxirredução , Ratos Sprague-Dawley , Aço/química , Testes de Toxicidade Aguda , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/toxicidade , Soldagem/métodos
14.
Inhal Toxicol ; 26(12): 697-707, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25140454

RESUMO

Spot welding is used in the automotive and aircraft industries, where high-speed, repetitive welding is needed to join thin sections of metal. Epoxy adhesives are applied as sealers to the metal seams. Pulmonary function abnormalities and airway irritation have been reported in spot welders, but no animal toxicology studies exist. Therefore, the goal of this study was to investigate vascular, immune and lung toxicity measures after exposure to these metal fumes in an animal model. Male Sprague-Dawley rats were exposed by inhalation to 25 mg/m³ to either mild-steel spot welding aerosols with sparking (high metal, HM) or without sparking (low metal, LM) for 4 h/d for 3, 8 and 13 d. Shams were exposed to filtered air. Bronchoalveolar lavage (BAL), lung gene expression and ex vivo BAL cell challenge were performed to assess lung toxicity. Lung resistance (R(L)) was evaluated before and after challenge with inhaled methacholine (MCh). Functional assessment of the vascular endothelium in isolated rat tail arteries and leukocyte differentiation in the spleen and lymph nodes via flow cytometry was also done. Immediately after exposure, baseline R(L) was significantly elevated in the LM spot welding aerosols, but returned to control level by 24 h postexposure. Airway reactivity to MCh was unaffected. Lung inflammation and cytotoxicity were mild and transient. Lung epithelial permeability was significantly increased after 3 and 8 d, but not after 13 d of exposure to the HM aerosol. HM aerosols also caused vascular endothelial dysfunction and increased CD4+, CD8+ and B cells in the spleen. Only LM aerosols caused increased IL-6 and MCP-1 levels compared with sham after ex vivo LPS stimulation in BAL macrophages. Acute inhalation of mild-steel spot welding fumes at occupationally relevant concentrations may act as an irritant as evidenced by the increased R(L) and result in endothelial dysfunction, but otherwise had minor effects on the lung.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Endotélio Vascular/efeitos dos fármacos , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Mucosa Respiratória/efeitos dos fármacos , Vasculite/induzido quimicamente , Soldagem , Adesivos/química , Aerossóis , Animais , Células Cultivadas , Endotélio Vascular/imunologia , Endotélio Vascular/fisiopatologia , Incêndios , Hematopoese Extramedular/efeitos dos fármacos , Imunidade nas Mucosas/efeitos dos fármacos , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Leucócitos/patologia , Pulmão/irrigação sanguínea , Pulmão/imunologia , Pulmão/patologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/patologia , Masculino , Ratos Sprague-Dawley , Mucosa Respiratória/imunologia , Mucosa Respiratória/patologia , Organismos Livres de Patógenos Específicos , Baço/efeitos dos fármacos , Baço/imunologia , Baço/patologia , Aço/química , Testes de Toxicidade Aguda , Vasculite/imunologia , Vasculite/patologia , Vasculite/fisiopatologia , Soldagem/métodos
15.
Inhal Toxicol ; 26(12): 708-19, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25140455

RESUMO

Limited information exists regarding the health risks associated with inhaling aerosols that are generated during resistance spot welding of metals treated with adhesives. Toxicology studies evaluating spot welding aerosols are non-existent. A resistance spot welding aerosol generator and inhalation exposure system was developed. The system was designed by directing strips of sheet metal that were treated with an adhesive to two electrodes of a spot welder. Spot welds were made at a specified distance from each other by a computer-controlled welding gun in a fume collection chamber. Different target aerosol concentrations were maintained within the exposure chamber during a 4-h exposure period. In addition, the exposure system was run in two modes, spark and no spark, which resulted in different chemical profiles and particle size distributions. Complex aerosols were produced that contained both metal particulates and volatile organic compounds (VOCs). Size distribution of the particles was multi-modal. The majority of particles were chain-like agglomerates of ultrafine primary particles. The submicron mode of agglomerated particles accounted for the largest portion of particles in terms of particle number. Metal expulsion during spot welding caused the formation of larger, more spherical particles (spatter). These spatter particles appeared in the micron size mode and accounted for the greatest amount of particles in terms of mass. With this system, it is possible to examine potential mechanisms by which spot welding aerosols can affect health, as well as assess which component of the aerosol may be responsible for adverse health outcomes.


Assuntos
Adesivos/química , Poluentes Ocupacionais do Ar/toxicidade , Exposição por Inalação/efeitos adversos , Metais/química , Testes de Toxicidade/instrumentação , Soldagem , Aerossóis , Poluentes Ocupacionais do Ar/química , Animais , Animais de Laboratório , Câmaras de Exposição Atmosférica , Automação Laboratorial , Incêndios , Microscopia Eletrônica de Varredura , National Institute for Occupational Safety and Health, U.S. , Tamanho da Partícula , Material Particulado/química , Material Particulado/toxicidade , Aço/química , Estados Unidos , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/toxicidade , Soldagem/métodos
17.
Environ Int ; 185: 108494, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364571

RESUMO

Hexavalent chromium [Cr(VI)] is a common environmental pollutant and chronic exposure to Cr(VI) causes lung cancer in humans, however, the mechanism of Cr(VI) carcinogenesis has not been well understood. Lung cancer is the leading cause of cancer-related death, although the mechanisms of how lung cancer develops and progresses have been poorly understood. While long non-coding RNAs (lncRNAs) are found abnormally expressed in cancer, how dysregulated lncRNAs contribute to carcinogenesis remains largely unknown. The goal of this study is to investigate the mechanism of Cr(VI)-induced lung carcinogenesis focusing on the role of the lncRNA ABHD11 antisense RNA 1 (tail to tail) (ABHD11-AS1). It was found that the lncRNA ABHD11-AS1 expression levels are up-regulated in chronic Cr(VI) exposure-transformed human bronchial epithelial cells, chronically Cr(VI)-exposed mouse lung tissues, and human lung cancer cells as well. Bioinformatics analysis revealed that ABHD11-AS1 levels are up-regulated in lung adenocarcinomas (LUADs) tissues and associated with worse overall survival of LUAD patients but not in lung squamous cell carcinomas. It was further determined that up-regulation of ABHD11-AS1 expression plays an important role in chronic Cr(VI) exposure-induced cell malignant transformation and tumorigenesis, and the stemness of human lung cancer cells. Mechanistically, it was found that ABHD11-AS1 directly binds SART3 (spliceosome associated factor 3, U4/U6 recycling protein). The interaction of ABHD11-AS1 with SART3 promotes USP15 (ubiquitin specific peptidase 15) nuclear localization. Nuclear localized USP15 interacts with pre-mRNA processing factor 19 (PRPF19) to increase CD44 RNA alternative splicing activating ß-catenin and enhancing cancer stemness. Together, these findings indicate that lncRNA ABHD11-AS1 interacts with SART3 and regulates CD44 RNA alternative splicing to promote cell malignant transformation and lung carcinogenesis.


Assuntos
Cromo , Enzimas Reparadoras do DNA , Receptores de Hialuronatos , Neoplasias Pulmonares , Proteínas Nucleares , RNA Longo não Codificante , Serina Proteases , Proteases Específicas de Ubiquitina , Humanos , Animais , Camundongos , RNA Antissenso/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Processamento Alternativo , Carcinogênese/genética , Transformação Celular Neoplásica , Pulmão , Neoplasias Pulmonares/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Antígenos de Neoplasias/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo
18.
Part Fibre Toxicol ; 10: 45, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-24107379

RESUMO

BACKGROUND: Epidemiology suggests that occupational exposure to welding particulate matter (PM) may increase lung cancer risk. However, animal studies are lacking to conclusively link welding with an increased risk. PM derived from stainless steel (SS) welding contains carcinogenic metals such as hexavalent chromium and nickel. We hypothesized that welding PM may act as a tumor promoter and increase lung tumor multiplicity in vivo. Therefore, the capacity of chromium-containing gas metal arc (GMA)-SS welding PM to promote lung tumors was evaluated using a two-stage (initiation-promotion) model in lung tumor susceptible A/J mice. METHODS: Male mice (n = 28-30/group) were treated either with the initiator 3-methylcholanthrene (MCA;10 µg/g; IP) or vehicle (corn oil) followed by 5 weekly pharyngeal aspirations of GMA-SS (340 or 680 µg/exposure) or PBS. Lung tumors were enumerated at 30 weeks post-initiation. RESULTS: MCA initiation followed by GMA-SS welding PM exposure promoted tumor multiplicity in both the low (12.1 ± 1.5 tumors/mouse) and high (14.0 ± 1.8 tumors/mouse) exposure groups significantly above MCA/sham (4.77 ± 0.7 tumors/mouse; p = 0.0001). Multiplicity was also highly significant (p < 0.004) across all individual lung regions of GMA-SS-exposed mice. No exposure effects were found in the corn oil groups at 30 weeks. Histopathology confirmed the gross findings and revealed increased inflammation and a greater number of malignant lesions in the MCA/welding PM-exposed groups. CONCLUSIONS: GMA-SS welding PM acts as a lung tumor promoter in vivo. Thus, this study provides animal evidence to support the epidemiological data that show welders have an increased lung cancer risk.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Cromo/toxicidade , Cocarcinogênese , Neoplasias Pulmonares/induzido quimicamente , Fumaça/efeitos adversos , Soldagem , Animais , Neoplasias Pulmonares/patologia , Masculino , Metilcolantreno/toxicidade , Camundongos , Fatores de Tempo
19.
Part Fibre Toxicol ; 10(1): 53, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24144386

RESUMO

BACKGROUND: Dosimetry for toxicology studies involving carbon nanotubes (CNT) is challenging because of a lack of detailed occupational exposure assessments. Therefore, exposure assessment findings, measuring the mass concentration of elemental carbon from personal breathing zone (PBZ) samples, from 8 U.S.-based multi-walled CNT (MWCNT) manufacturers and users were extrapolated to results of an inhalation study in mice. RESULTS: Upon analysis, an inhalable elemental carbon mass concentration arithmetic mean of 10.6 µg/m3 (geometric mean 4.21 µg/m3) was found among workers exposed to MWCNT. The concentration equates to a deposited dose of approximately 4.07 µg/d in a human, equivalent to 2 ng/d in the mouse. For MWCNT inhalation, mice were exposed for 19 d with daily depositions of 1970 ng (equivalent to 1000 d of a human exposure; cumulative 76 yr), 197 ng (100 d; 7.6 yr), and 19.7 ng (10 d; 0.76 yr) and harvested at 0, 3, 28, and 84 d post-exposure to assess pulmonary toxicity. The high dose showed cytotoxicity and inflammation that persisted through 84 d after exposure. The middle dose had no polymorphonuclear cell influx with transient cytotoxicity. The low dose was associated with a low grade inflammatory response measured by changes in mRNA expression. Increased inflammatory proteins were present in the lavage fluid at the high and middle dose through 28 d post-exposure. Pathology, including epithelial hyperplasia and peribronchiolar inflammation, was only noted at the high dose. CONCLUSION: These findings showed a limited pulmonary inflammatory potential of MWCNT at levels corresponding to the average inhalable elemental carbon concentrations observed in U.S.-based CNT facilities and estimates suggest considerable years of exposure are necessary for significant pathology to occur at that level.


Assuntos
Relação Dose-Resposta a Droga , Nanotubos de Carbono , Exposição Ocupacional , Animais , Humanos , Exposição por Inalação , Camundongos , Microscopia Eletrônica
20.
Nanotoxicology ; 17(10): 669-686, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38116948

RESUMO

Thermal spray coating is a process in which molten metal is sprayed onto a surface. Little is known about the health effects associated with these aerosols. Sprague-Dawley rats were exposed to aerosols (25 mg/m3 × 4 hr/d × 4 d) generated during thermal spray coating using different consumables [i.e. stainless-steel wire (PMET731), Ni-based wire (PMET885), Zn-based wire (PMET540)]. Control animals received air. Bronchoalveolar lavage was performed at 4 and 30 d post-exposure to assess lung toxicity. The particles were chain-like agglomerates and similar in size (310-378 nm). Inhalation of PMET885 aerosol caused a significant increase in lung injury and inflammation at both time points. Inhalation of PMET540 aerosol caused a slight but significant increase in lung toxicity at 4 but not 30 d. Exposure to PMET731 aerosol had no effect on lung toxicity. Overall, the lung responses were in the order: PMET885≫PMET540 >PMT731. Following a shorter exposure (25 mg/m3 × 4 h/d × 1d), lung burdens of metals from the different aerosols were determined by ICP-AES at 0, 1, 4 and 30 d post-exposure. Zn was cleared from the lungs at the fastest rate with complete clearance by 4 d post-exposure. Ni, Cr, and Mn had similar rates of clearance as nearly half of the deposited metal was cleared by 4 d. A small but significant percentage of each of these metals persisted in the lungs at 30 d. The pulmonary clearance of Fe was difficult to assess because of inherently high levels of Fe in control lungs.


Assuntos
Pulmão , Aerossóis e Gotículas Respiratórios , Ratos , Animais , Ratos Sprague-Dawley , Administração por Inalação , Metais/toxicidade , Aerossóis , Exposição por Inalação , Líquido da Lavagem Broncoalveolar , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA